In many plant and animal species, sexual and asexual forms have different geographical distributions ('geographic parthenogenesis'). The common dandelion Taraxacum officinale s.l. provides a particularly clear example of differing distributions: diploid sexuals are restricted to southern and central Europe, while triploid asexuals occur across Europe. To get a better understanding of the factors underlying this pattern, we studied the distribution and demography of sexuals and asexuals in a mixed population that was located at the northern distribution limit of the sexuals. In this population three adjacent, contrasting microhabitats were found: a foreland and south and north slopes of a river dike. Comparative analyses of the distribution, phenology and demography indicated that sexuals had a stronger preference for the south slope than did asexuals. We therefore propose that the large-scale geographic parthenogenesis in T. officinale is shaped by an environmental gradient which acts upon the sexuals.
Peacocks are a classic example of sexual selection, where females preferentially mate with males who have longer, more elaborate trains. One of the central hypotheses of sexual selection theory is that large or elaborate male 'ornaments' may signal high genetic quality (good genes). Good genes are thought to be those associated with disease resistance and as diversity at the major histocompatibility complex (MHC) has been shown to equate to superior immune responses, we test whether the peacock's train reveals genetic diversity at the MHC. We demonstrate via a captive breeding experiment that train length of adult males reflects genetic diversity at the MHC while controlling for genome-wide diversity and that peahens lay more, and larger, eggs for males with a more diverse MHC, but not for males with longer trains. Our results suggest that females are assessing and responding to male quality in terms of MHC diversity, but this assessment does not appear to be via train length, despite the fact that train length reflects MHC diversity.
Apomictic plants often produce pollen that can function in crosses with related sexuals. Moreover, facultative apomicts can produce some sexual offspring. In dandelions, Taraxacum, a sexual-asexual cycle between diploid sexuals and triploid apomicts, has been described, based on experimental crosses and population genetic studies. Little is known about the actual hybridization processes in nature. We therefore studied the sexual-asexual cycle in a mixed dandelion population in the Netherlands. In this population, the frequencies of sexual diploids and triploids were 0.31 and 0.68, respectively. In addition, less than 1% tetraploids were detected. Diploids were strict sexuals, triploids were obligate apomicts, but tetraploids were most often only partly apomictic, lacking certain elements of apomixis. Tetraploid seed fertility in the field was significantly lower than that of apomictic triploids. Field-pollinated sexual diploids produced on average less than 2% polyploid offspring, implying that the effect of hybridization in the 2x-3x cycle in Taraxacum will be low. Until now, 2x-3x crosses were assumed to be the main pathway of new formation of triploid apomicts in the sexual-asexual cycle in Taraxacum. However, tetraploid pollen donors produced 28 times more triploid offspring in experimental crosses with diploid sexuals than triploid pollen donors. Rare tetraploids may therefore act as an important bridge in the formation of new triploid apomicts.
Spotted suslik Spermophilus suslicus is one of the most endangered mammal species in Poland. Over the last 50 years, it lost more than 90% of its populations and about 70% of its individuals. In order to establish a conservation and reintroduction program, the knowledge of population structure of the species is crucial. We have developed nine polymorphic microsatellite loci to analyse the population structure. Six of the primer sets also amplify polymorphic markers in the European suslik Spermophilus citellus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.