Timely sowing is critical for achieving high grain yields in winter cereals. However, inadequate seed-zone moisture for germination commonly delays sowing to reduce biomass and subsequent yield in semi-arid environments. Sowing deep to reach soil moisture is often avoided by growers of Rht-B1b and Rht-D1b semi-dwarf wheat as these wheat show poor emergence when sown deep. Their reduced cell elongation associated with insensitivity to endogenous gibberellins, results in shorter coleoptiles and smaller early leaf area. Alternative dwarfing genes responsive to endogenous gibberellins (e.g. Rht8) are available for use in wheat breeding. These reduce plant height without affecting coleoptile length and offer potential to select longer coleoptile wheat for deep sowing. Nine semidwarf (Rht8, Rht-B1b, and Rht-D1b) and seven tall (rht) wheat genotypes were sown at depths of 50, 80 and 110 mm at three locations in 2 or 3 years. Coleoptile lengths measured in a growth cabinet at four temperatures (11, 15, 19 and 23 8C) were strongly correlated with coleoptile length (r p = 0.77-0.79 **) and plant number (r p = 0.49 *-0.79 **) in deep-sown plots in the field. Furthermore, differences in coleoptile length were genetically correlated with greater numbers of emerged seedlings (r g = 0.97 **), shallower crown depth (À0.58 **), greater seedling leaf area (0.59 **) and seedling biomass (0.44 *). Wheat containing the Rht-B1b or Rht-D1b dwarfing genes produced significantly (P < 0.01) shorter coleoptiles (97 mm) than both Rht8 (118 mm) and tall (117 mm) wheat. In turn, compared with emergence from 50 mm depth, the Rht-B1b and Rht-D1b wheat produced significantly fewer seedlings at 110 mm sowing depth (À62%) than either Rht8 (À41%) or tall (À37%) wheat. Effects of deep sowing early in the season were maintained with reductions in spike number and biomass at both anthesis and maturity. Kernel number was also reduced with deep sowing leading to reductions in grain yield. Over all entries, genotypic increases in plant number were associated with increases in fertile spike (r g = 0.61 **) and kernel number (0.21 *), total biomass (0.26 *) and grain yield (0.28 *). Reduction in spike number and grain yield with deep sowing was smallest for the Rht8 (À18 and À10%) and rht (À15 and À7%) wheat, and largest for the Rht-B1b/D1b (À39 and À16%) wheat. Plant height and coleoptile length were independent among Rht8 and tall wheat genotypes. This study demonstrates the importance of good seedling emergence in achieving high wheat yields, and the potential use of alternative dwarfing genes such as Rht8 in development of long coleoptile, reduced height wheat suitable for deep sowing.
Mycothiol (MSH) plays important roles in maintaining cytosolic redox homeostasis and in adapting to reactive oxygen species in the high-(G + C)-content Gram-positive Actinobacteria. However, its physiological roles are ill defined compared to glutathione, the functional analog of MSH in Gram-negative bacteria and most eukaryotes. In this research, we explored the impact of intracellular MSH on cellular physiology by using MSH-deficient mutants in the model organism Corynebacterium glutamicum. We found that intracellular MSH contributes significantly to resistance to alkylating agents, glyphosate, ethanol, antibiotics, heavy metals and aromatic compounds. In addition, intracellular MSH is beneficial for withstanding oxidative stress induced by various oxidants in C. glutamicum. This study greatly expanded our current knowledge on the physiological functions of mycothiol in C. glutamicum and could be applied to improve the robustness of this scientifically and commercially important species in the future.
Previous studies have identified a putative mycothiol peroxidase (MPx) in Corynebacterium glutamicum that shared high sequence similarity to sulfur-containing Gpx (glutathione peroxidase; CysGPx). In the present study, we investigated the MPx function by examining its potential peroxidase activity using different proton donors. The MPx degrades hydrogen peroxide and alkyl hydroperoxides in the presence of either the thioredoxin/Trx reductase (Trx/TrxR) or the mycoredoxin 1/mycothione reductase/mycothiol (Mrx1/Mtr/MSH) regeneration system. Mrx1 and Trx employ different mechanisms in reducing MPx. For the Mrx1 system, the catalytic cycle of MPx involves mycothiolation/demycothiolation on the Cys(36) sulfenic acid via the monothiol reaction mechanism. For the Trx system, the catalytic cycle of MPx involves formation of an intramolecular disulfide bond between Cys(36) and Cys(79) that is pivotal to the interaction with Trx. Both the Mrx1 pathway and the Trx pathway are operative in reducing MPx under stress conditions. Expression of mpx markedly enhanced the resistance to various peroxides and decreased protein carbonylation and intracellular reactive oxygen species (ROS) accumulation. The expression of mpx was directly activated by the stress-responsive extracytoplasmic function-σ (ECF-σ) factor [SigH]. Based on these findings, we propose that the C. glutamicum MPx represents a new type of GPx that uses both mycoredoxin and Trx systems for oxidative stress response.
Outer membrane vesicles (OMVs) can function as nanoscale vectors that mediate bacterial interactions in microbial communities. How bacteria recognize and recruit OMVs inter-specifically remains largely unknown, thus limiting our understanding of the complex physiological and ecological roles of OMVs. Here, we report a ligand-receptor interaction-based OMV recruitment mechanism, consisting of a type VI secretion system (T6SS)-secreted lipopolysaccharide (LPS)-binding effector TeoL and the outer membrane receptors CubA and CstR. We demonstrated that Cupriavidus necator T6SS1 secretes TeoL to preferentially associate with OMVs in the extracellular milieu through interactions with LPS, one of the most abundant components of OMVs. TeoL associated with OMVs can further bind outer membrane receptors CubA and CstR, which tethers OMVs to the recipient cells and allows cargo to be delivered. The LPS-mediated mechanism enables bacterial cells to recruit OMVs derived from different species, and confers advantages to bacterial cells in iron acquisition, interbacterial competition, and horizontal gene transfer (HGT). Moreover, our findings provide multiple new perspectives on T6SS functionality in the context of bacterial competition and HGT, through the recruitment of OMVs.
Type VI protein secretion systems (T6SSs) are specialized transport apparatus which can target both eukaryotic and prokaryotic cells and play key roles in host–pathogen–microbiota interactions. Therefore, T6SSs have attracted much attention as a research topic during the past ten years. In this review, we particularly summarized the T6SS antibacterial function, which involves an interesting offensive and defensive mechanism of the effector–immunity (E–I) pairs. The three main categories of effectors that target the cell wall, membranes, and nucleic acids during bacterial interaction, along with their corresponding immunity proteins are presented. We also discuss structural analyses of several effectors and E–I pairs, which explain the offensive and defensive mechanisms underpinning T6SS function during bacterial competition for niche-space, as well as the bioinformatics, proteomics, and protein–protein interaction (PPI) methods used to identify and characterize T6SS mediated E–I pairs. Additionally, we described PPI methods for verifying E–I pairs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.