Mycothiol (MSH) plays important roles in maintaining cytosolic redox homeostasis and in adapting to reactive oxygen species in the high-(G + C)-content Gram-positive Actinobacteria. However, its physiological roles are ill defined compared to glutathione, the functional analog of MSH in Gram-negative bacteria and most eukaryotes. In this research, we explored the impact of intracellular MSH on cellular physiology by using MSH-deficient mutants in the model organism Corynebacterium glutamicum. We found that intracellular MSH contributes significantly to resistance to alkylating agents, glyphosate, ethanol, antibiotics, heavy metals and aromatic compounds. In addition, intracellular MSH is beneficial for withstanding oxidative stress induced by various oxidants in C. glutamicum. This study greatly expanded our current knowledge on the physiological functions of mycothiol in C. glutamicum and could be applied to improve the robustness of this scientifically and commercially important species in the future.
bNrdH redoxins are small protein disulfide oxidoreductases behaving like thioredoxins but sharing a high amino acid sequence similarity to glutaredoxins. Although NrdH redoxins are supposed to be another candidate in the antioxidant system, their physiological roles in oxidative stress remain unclear. In this study, we confirmed that the Corynebacterium glutamicum NrdH redoxin catalytically reduces the disulfides in the class Ib ribonucleotide reductases (RNR), insulin and 5,5=-dithiobis-(2-nitrobenzoic acid) (DTNB), by exclusively receiving electrons from thioredoxin reductase. Overexpression of NrdH increased the resistance of C. glutamicum to multiple oxidative stresses by reducing ROS accumulation. Accordingly, elevated expression of the nrdH gene was observed when the C. glutamicum wild-type strain was exposed to oxidative stress conditions. It was discovered that the NrdH-mediated resistance to oxidative stresses was largely dependent on the presence of the thiol peroxidase Prx, as the increased resistance to oxidative stresses mediated by overexpression of NrdH was largely abrogated in the prx mutant. Furthermore, we showed that NrdH facilitated the hydroperoxide reduction activity of Prx by directly targeting and serving as its electron donor. Thus, we present evidence that the NrdH redoxin can protect against the damaging effects of reactive oxygen species (ROS) induced by various exogenous oxidative stresses by acting as a peroxidase cofactor.
Over-expression of the gene, mshA, coding for mycothiol glycosyl transferase improved the robustness of Corynebacterium glutamicum to various stresses. Intracellular mycothiol (MSH) content was increased by 114 % in WT(pXMJ19-mshA) compared to WT(pXMJ19). Survival rates increased by 44, 39, 90, 77, 131, 87, 52, 47, 57, 85 and 33 % as compared to WT(pXMJ19) under stress by H2O2 (40 mM), methylglyoxal (5.8 mM), erythromycin (0.08 mg ml(-1)), streptomycin (0.005 mg ml(-1)), Cd(2+) (0.01 mM), Mn(2+) (2 mM), formic acid (0.05 %), acetic acid (0.15 %), levulinic acid (0.25 %), furfural (7.2 mM), and ethanol (10 % v/v), respectively. Increased MSH content also decreased the concentration of reactive oxygen species in the presence of the above stresses. Our results may open a new avenue for enhancing robustness of industrial bacteria for production of commodity chemicals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.