Although salinity inhibits plant growth, application of appropriate rhizosphere bacteria can diminish this negative effect. We studied one possible mechanism that may underlie this beneficial response. Wheat plants were inoculated with Bacillus subtilis IB-22 and Pseudomonas mandelii IB-Ki14 and their consequences for growth, water relations, and concentrations of the hormone abscisic acid (ABA) were followed in the presence of soil salinity. Salinity alone increased ABA concentration in wheat leaves and roots and this was associated with decreased stomatal conductance, but also with chlorophyll loss. Bacterial treatment raised ABA concentrations in roots, suppressed accumulation of leaf ABA, decreased chlorophyll loss, and promoted leaf area and transpiration. However, water balance was maintained due to increased water uptake by inoculated plants, brought about in part by a larger root system. The effect may be the outcome of ABA action since the hormone is known to maintain root extension in stressed plants. Root ABA concentration was highest in salt-stressed plants inoculated with B. subtilis and this contributed to greater root hydraulic conductivity. We conclude that bacteria can raise salt resistance in wheat by increasing root ABA, resulting in larger root systems that can also possess enhanced hydraulic conductivity thereby supporting better-hydrated leaves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.