Hormone production by micro-organisms selected as antagonists of pathogenic fungi and the effect of their introduction into soil on hormone content and growth of lettuce plants were studied. Hormones in bacterial cultural media and in plant extracts were immunopurified and assayed using specific antibodies to indolyl-3-acetic acid (IAA), abscisic acid (ABA), and different cytokinins (zeatin riboside (ZR), dihydrozeatinriboside (DHZR) and isopentenyladenosine (iPA)). ZR was shown to be the main cytokinin present in bacterial cultural media as a complex with a high molecular weight component. Inoculation of lettuce plants with bacteria increased the cytokinin content of both shoots and roots. Accumulation of zeatin and its riboside was greatest in roots shortly 2 days after inoculation, when their content was 10 times higher than in control. Changes in the content of other hormones (ABA and IAA) were observed at the end of experiments only. Accumulation of cytokinins in inoculated lettuce plants was associated with an increase in plant shoot and root weight of approximately 30% over 8 days.
Here we highlight how both the root and shoot environment impact on whole plant hormone balance, particularly under stresses such as soil drying, and relate hormone ratios and relative abundances to processes influencing plant performance and yield under both mild and more severe stress. We discuss evidence (i) that abscisic acid (ABA) and ethylene act antagonistically on grain-filling rate amongst other yield-impacting processes; (ii) that ABA's effectiveness as an agent of stomatal closure can be modulated by coincident ethylene or cytokinin accumulation; and (iii) that enhanced cytokinin production can increase growth and yield by improving foliar stay-green indices under stress, and by improving processes that impact grain-filling and number, and that this can be the result of altered relative abundances of cytokinin and ABA (and other hormones). We describe evidence and novel processes whereby these phenomena are/could be amenable to manipulation through genetic and management routes, such that plant performance and yield can be improved. We explore the possibility that a range of ABA-ethylene and ABA-cytokinin relative abundances could represent targets for breeding/managing for yield resilience under a spectrum of stress levels between severe and mild, and could circumvent some of the pitfalls so far encountered in the massive research effort towards breeding for increases in the complex trait of yield.
Cytokinins can promote stomatal opening, stimulate shoot growth and decrease root growth. When soil is drying, natural cytokinin concentrations decrease in association with stomatal closure and a redirection of growth away from the shoots to the roots. We asked if decreased cytokinin concentrations mediate these adaptive responses by lessening water loss and promoting root growth thereby favouring exploration for soil water. Our approach was to follow the consequences for 12-d-old lettuce seedlings of inoculating the growing medium with cytokininproducing bacteria under conditions of water sufficiency and deficit. Inoculation increased shoot cytokinins as assessed by immunoassay and mass spectrometry. Inoculation also promoted the accumulation of shoot mass and shortened roots while having a smaller effect on root mass. Inoculation did not raise stomatal conductance. The possible promoting effect of these cytokinins on stomatal conductance was seemingly hampered by increases in shoot ABA that inoculation also induced. Inoculation lowered root/shoot ratios by stimulating shoot growth. The effect was greater in non-droughted plants but remained sufficiently strong for shoot mass of inoculated droughted plants to exceed that of well-watered non-inoculated plants. We conclude that compensating for the loss of natural cytokinins in droughted plants interferes with the suppression of shoot growth and the enhancement of root elongation normally seen in droughted plants.
The capacity of rhizoshere bacteria to influence plant hormonal status, by bacterial production or metabolism of hormones, is considered an important mechanism by which they promote plant growth, and productivity. Nevertheless, inoculating these bacteria into the plant rhizosphere may produce beneficial or detrimental results depending on bacterial effects on hormone composition and quantity in planta, and the environmental conditions under which the plants are growing. This review considers some effects of bacterial hormone production or metabolism on root growth and development and shoot physiological processes. We analyze how these changes in root and shoot growth and function help plants adapt to their growth conditions, especially as these change from optimal to stressful. Consistent effects are addressed, along with plant responses to specific environmental stresses: drought, salinity, and soil contamination (with petroleum in particular).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.