Abstract. We address the problem of wave propagation in a pre-stressed elastic layer with mixed boundary conditions, the layer having one fixed the one free face. Numerical analysis provides a good initial insight into the influence of these boundary conditions on dispersion characteristics. In the long wave regime, there is clearly no evidence of low frequency motion and thus an absence of any long wave fundamental mode-like features. In the short wave regime however, the dispersion relations does show evidence of low frequency dispersion phenomena. The first harmonic's short wave phase speed limit is shown to be distinct from that of all other harmonics; this coincides with the associated Rayleigh surface wave speed. The short wave analysis is completed with the derivation of approximate solutions for the higher harmonics. Asymptotic long wave approximations of the dispersion relation are then obtained for motion within the vicinity of the thickness stretch and thickness shear resonance frequencies. These approximations are required to obtain the relative asymptotic orders of the displacement components for frequencies within the vicinity of either the shear or stretch resonance frequencies. This enables an analogue of the asymptotic stress-strainstain to be established through asymptotic integration.
a b s t r a c tThe dispersion relation associated with a symmetric three layer structure, composed of compressible, pre-stressed elastic layers, is derived. This mathematically elaborate transcendental equation gives phase speed as an implicit function of wave number. Numerical solutions are established to show a wide range of dispersion behaviour which is delicately dependent on the material parameters and pre-stress in each layer. Particularly interesting behaviour is observed within the short wave (high wave number) regime, with six possible cases of short wave liming behaviour shown possible. Within each of these, a short wave asymptotic analysis is carried out, resulting in a set of approximations which provide explicit relationships between phase speed and wave number. It is envisaged that these approximations may prove helpful to approximate numerical truncation errors associated with impact response, as well as providing excellent first approximations for particularly (numerically) challenging sets of material parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.