The research covers the operation principles and structure functional organization of specialized optical-electronic device for calculation of a volumetric object. The purpose of the device is to build the 3D plane, which with the given degree of precision approximates the surface of the top and nape sections of a human head intended for implication in the production of customized headwear and elements of protectiveclothing or for other similar tasks related to the analysis of the 3D objectshape. The proposed device provides the ability to build the 3D model of an object under study by acquiring and analyzing the series of images of its surface continuously acquired from three or four optical-electronic sensors throughout the measurement process. The number of the optical-electronic sensors depends on the configuration of the optical-electronic device. Optical-electronic sensors organized in a given order relative to each other constitute a unified system, which in its turn is to be placed in the prescribed range of positions in relation to the head. In order to simplify the procedure and enhance the accuracy of calculation of special coordinates for a set of points of the object surface and reduce the computational complexity of the developed algorithms we use the tight-fitting contact hat consisting of a set of special contrast markers., which is to be put on the head. The following beneficial features of the proposed method and the optical-electronic device have the following beneficial features: (i) no strict requirements to interrelated positioning of the analyzed object and the system of the optical-electronic sensors; (ii) possibility to use commercially available web cameras as optical-electronic sensors; and (iii) no structurally complex and moving mechanical elements, which allow its mass use with no reduction in the accuracy of calculated point coordinates on the surface of an object required for practical tasks. The experiments we conducted showed that depending on the interrelated position of the device and the analyzed object our optical-electronic device gives the calculation error of the 3D coordinates of about ±2 to ±7 mm, which is sufficient for practical tasks.
The paper considers approaches to the construction of a geographically distributed optical-electronic device, providing an analysis of significant and long working scenes in the interests of automating the processes of control and management of robotic tools in industrial assembly shops and warehouses. The principal difference of the proposed solution is the possibility of obtaining images of the analyzed objects using optical-electronic sensors located in different parts of the workspace to realize the function of binocular vision on a much larger area of the working scene compared to analogues. A distinctive novelty of the developed theoretical approach is the approach to binocular technical vision, which consists in iteratively performing calibration procedures for selected pairs of opticalelectronic sensors and the subsequent calculation of the spatial coordinates of the objects being analyzed using calibrated pairs of optical-electronic sensors. The results of image analysis from each of the optoelectronic sensors are used to accompany moving objects and analyze their motion paths in the working scene space. To implement the developed theoretical approaches, a modular optoelectronic device has been developed, consisting of two types of modules. The first type of module is a standalone opto-electronic module, which includes an opto-electronic sensor and means for processing and extracting primary features immediately upon receiving images for their subsequent analysis. The second type is a computational module that provides processing of primary data from a set of modules of the first type. Data transfer between device modules is provided via radio over a WiFi network. A distinctive feature of the developed device is the primary processing of images immediately upon their receipt and transmission over the radio channel of a small amount of data about the selected objects to the computing module, which performs the final stages of data processing and generates a set of parameters describing the characteristics and spatial coordinates of the objects found on the working scene for their further of use. Experimental studies were conducted on the developed simulation model, which confirmed the correctness of the developed theoretical approach and the possibility of its application in practice.
Цель исследования. В работе объектом исследования являются методы и алгоритмы автоматического получения и улучшения качества цифровых изображений в контроллерах для систем этикетирования и систем обработки и распознавания изображений. Цель работы-разработка новых методов улучшения качества и обработки изображений для использования в оптико-электронных устройствах и системах технического зрения. Отмечена актуальность научно-технической задачи по расширению функциональных возможностей и повышению качества функционирования вычислительных устройств в системах управления и контроля качества этикетирования объектов, в частности, отмечена необходимость выделения изображения этикетки с целью определения нарушения качества ее нанесения. В качестве основной корректируемой особенности получаемых изображений выбрана дисторсия. Методы. Рассмотрены основные подходы, используемые при определении и коррекции дисторсии, выявлены их недостатки, проведен анализ основных методов, описанных в литературе. В работе использовались аппарат аналитической геометрии, теория распознавания образов, методы обработки и анализа растровых изображений. Результаты. Разработан метод обработки изображений для улучшения их качества, программное обеспечение для обнаружения и обработки изображений этикеток и документов. Предложен вариант определения радиальной дисторсии при смещении наблюдения в различных направлениях. Выполнено моделирование разработанного метода с помощью специально созданного программного обеспечения. Проведены экспериментальные исследования созданного программного обеспечения. Приведены их результаты и отмечены достоинства и недостатки. Заключение. Разработанный метод может использоваться в устройствах получения и обработки изображений, функционирующих в автоматическом режиме и применяемых в системах технического зрения и контроля качества этикетирования. Ключевые слова: обработка изображений; обнаружение этикетки; коррекция дисторсии. Благодарности. Работа выполнена в рамках темы № 0071-2019-0001 Развитие теории и методов прикладной математики, нейросетевых технологий и систем управления процессами в задачах CADсистем, анализа визуальных данных, защиты информации и прогнозирования. Конфликт интересов: Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.
This publication presents the results of creating a service for individual on-line selection and customization of protective helmets for active sports and recreation. The service is based on the use of developed and patented hardware and software solutions that enable creation of three-dimensional shapes of the surface of a client's head, the inner surface of a helmet and the subsequent virtual combination of a client's head and helmet in order to calculate the vector of parameters of matching the anthropometric features of a client's head. As a means of generating the primary data on the surface of a head, a mobile phone or a developed hardware scanner can be used. The service also provides an objective selection of the best fitting helmet with consideration of the individual subjective preferences of a client and analysis of a client's experience in using helmets. After selecting the best fitting commercially available helmet for a specific client, a helmet can be adapted using a specially designed inlay of a variable thickness in a helmet. The adaption of a helmet ensures its maximum conformity to the shape of a head. Adaption is carried out on the basis of a special, inexpensive and easy-to-use helmet inlay. The thickness of the inlay is calculated automatically that ensures the best possible conformity with a customer, providing comfort and safety. The conducted experimental studies, as well as the reviews of customers who participated in testing the system, confirmed the desirability and accuracy of the selection of helmets based on the developed technology.
The research covers the operation principles and structure-functionorganization of a specialized optical-electronic device for calculation of a volumetric object. Here we present the results of our development of a special-purpose portable scanner of a 3D surface of a complete curvilinear object with a complex surface. Favorably compared with the analogs, our scanner features a high-precisioncalculation of a curvilinear object along with a compact and simple technical design which makes it easy to manufacture. We providedifferent technical solutions of our scanner based on novel original decisions which shuffle its technical features depending on the objectiveand enable to apply it in various ways. The above-said makes our scanner commercially attractive for certain tasks required in the market of customized items for individual application. The general advantages of the designed scanner are several: the use of several passive optical-electronic sensors which are placed in preset fixed positions and factory calibrated with no additional settings necessary; use of commercially available electronic components; low time-consuming acquisition of parameters of a 3D surface; and ease of operation. The experiments we conducted showed that, depending on the interrelated position of the device and the analyzed object, our device gives the calculation error of the 3D coordinates of about ±1.5to±2.5 mm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.