Предложена структурно-функциональная организация системы технического зрения, отличительной особенностью которой является введение двух различных групп аппаратных модулей. Модули первой группы обеспечивают получение и обработку изображений и конструктивно сопряжены с источником формирования изображений, модуль второй группы реализует вычисления по комплексированию информации и распознаванию объектов.
The paper considers approaches to the construction of a geographically distributed optical-electronic device, providing an analysis of significant and long working scenes in the interests of automating the processes of control and management of robotic tools in industrial assembly shops and warehouses. The principal difference of the proposed solution is the possibility of obtaining images of the analyzed objects using optical-electronic sensors located in different parts of the workspace to realize the function of binocular vision on a much larger area of the working scene compared to analogues. A distinctive novelty of the developed theoretical approach is the approach to binocular technical vision, which consists in iteratively performing calibration procedures for selected pairs of opticalelectronic sensors and the subsequent calculation of the spatial coordinates of the objects being analyzed using calibrated pairs of optical-electronic sensors. The results of image analysis from each of the optoelectronic sensors are used to accompany moving objects and analyze their motion paths in the working scene space. To implement the developed theoretical approaches, a modular optoelectronic device has been developed, consisting of two types of modules. The first type of module is a standalone opto-electronic module, which includes an opto-electronic sensor and means for processing and extracting primary features immediately upon receiving images for their subsequent analysis. The second type is a computational module that provides processing of primary data from a set of modules of the first type. Data transfer between device modules is provided via radio over a WiFi network. A distinctive feature of the developed device is the primary processing of images immediately upon their receipt and transmission over the radio channel of a small amount of data about the selected objects to the computing module, which performs the final stages of data processing and generates a set of parameters describing the characteristics and spatial coordinates of the objects found on the working scene for their further of use. Experimental studies were conducted on the developed simulation model, which confirmed the correctness of the developed theoretical approach and the possibility of its application in practice.
Предложена модификация генетического метода с целью наиболее эффективного определения глобального оптимума многомерной многоэкстремальной функции, в общем случае содержащей точки разрыва первого и второго рода. Выполнена численная оценка эффективности нахождения глобального оптимума предло-женной модификации генетического метода в сравнении со стандартным генетическим алгоритмом и его известными модификациями для выбранной группы многоэкстремальных тестовых функций.Ключевые слова: гибридный генетический алгоритм, градиентное обучение, селекция, прогнозирование, параболическая интерполяция, глобальная оптимизация, многоэкстремальная функция.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.