The Technical Design for the COMET Phase-I experiment is presented in this paper. COMET is an experiment at J-PARC, Japan, which will search for neutrinoless conversion of muons into electrons in the field of an aluminum nucleus ($\mu$–$e$ conversion, $\mu^{-}N \rightarrow e^{-}N$); a lepton flavor-violating process. The experimental sensitivity goal for this process in the Phase-I experiment is $3.1\times10^{-15}$, or 90% upper limit of a branching ratio of $7\times 10^{-15}$, which is a factor of 100 improvement over the existing limit. The expected number of background events is 0.032. To achieve the target sensitivity and background level, the 3.2 kW 8 GeV proton beam from J-PARC will be used. Two types of detectors, CyDet and StrECAL, will be used for detecting the $\mu$–$e$ conversion events, and for measuring the beam-related background events in view of the Phase-II experiment, respectively. Results from simulation on signal and background estimations are also described.
We have investigated correlations of coincident ΛN pairs from the stopped K − reaction on 4 He, and clearly observed Λp and Λn branches of the two-nucleon absorption process in the ΛN invariant mass spectra. In addition, non-mesonic reaction channels, which indicate possible exotic signals for the formation of strange multibaryon states, have been identified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.