Advanced fission and future fusion energy will require new high-performance structural alloys with outstanding properties that are sustained under long-term service in ultrasevere environments, including neutron damage producing up to 200 atomic displacements per atom and, for fusion, 2000 appm of He. Following a brief description of irradiation damage and damage resistance, we focus on an emerging class of nanostructured ferritic alloys (NFAs) that show promise for meeting these challenges. NFAs contain an ultrahigh density of Y-Ti-O-enriched dispersion-strengthening nanofeatures (NFs) that, along with fine grains and high dislocation densities, provide remarkably high tensile, creep, and fatigue strength. The NFs are stable under irradiation up to 800°C and trap He in fine-scale bubbles, suppressing void swelling and fast fracture embrittlement at lower temperatures and creep rupture embrittlement at high temperatures. The current state of the development and understanding of NFAs is described, along with some significant outstanding challenges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.