The ultrastructure of large neurons in the stratum griseum intermedium of the cat superior colliculus was examined following injections of horseradish peroxidase (HRP) into the dorsal tegmental decussation. Four HRP-labeled cells were selected, and the synaptology of their cell bodies and selected regions of proximal and distal dendrites was examined. The four neurons represent four morphologically distinct cell types: multipolar radiating, tufted, large vertical, and medium-sized trapezoid radiating. These four neurons correspond with cell types X1, X2, X3, and T1 respectively, according to the recent classification of neurons in the superior colliculus of the cat by Moschovakis and Karabelas (J. Comp Neurol. 239:276-308, '85). The three X type neurons are similar in having 83% of their somata and over 74% of their proximal dendrites contacted by synaptic profiles. Distal dendrites of the X type neurons, however, receive fewer synaptic contacts. In contrast, in the T1 cell, only 69% of the soma membrane is contacted by synaptic profiles, and the synaptic coverage on proximal and distal dendrites does not vary much from this. Of the eight types of synaptic terminals described in the stratum griseum intermedium of the cat superior colliculus by Norita (J. Comp. Neurol. 190:29-48, '80), only five are found in contact with the X and T type efferent neurons described here. There are some regional differences in terminal distribution, although each terminal is represented on each cell. Type III terminals (small, contain mostly pleomorphic vesicles, and make symmetrical contacts) are the most abundant on cell bodies and dendrites of all four cell types. Terminal types II (medium-sized, containing round and flattened vesicles, and making asymmetrical contacts), and IV (medium to large in size, containing flattened vesicles, and making symmetrical contacts) are well represented. In general, terminal types I (small, containing densely packed round vesicles, and making asymmetrical contacts) and VI (small and irregular in shape, containing flattened vesicles and making symmetrical contacts) are found infrequently. The identity of different types of synaptic terminal is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.