Two different axonal transport tracers were used in single animals to test the hypothesis that the expansive intermediate gray layer of the cat superior colliculus (stratum griseum intermediale, SGI) is composed of sensorimotor domains. The results show that two sensory pathways, the trigeminotectal and the corticotectal arising from the fourth somatosensory area, commingle in patches across the middle tier of the SGI. Furthermore, the data reveal that tectospinal cells are distributed within these patches. Taken together, these results show a commingling of functionally related afferents and a consistent spatial relationship between these afferents and tectospinal neurons. These relationships indicate that the SGI consists of domains that can be distinguished by their unique combinations of afferent and efferent connections. The ultrastructural characteristics and synaptic relationships of these somatosensory afferent pathways suggest that they have distinct roles within the sensorimotor domain of the SGI. The trigeminotectal terminals are relatively small, contain round vesicles and make asymmetrical synapses on small, presumably distal, dendrites. We submit that these trigeminal terminals bestow the basic receptive field properties upon SGI neurons. In contrast, the somatosensory corticotectal terminals are relatively large, contain round vesicles, make asymmetrical synapses, participate in triads, and are presynaptic to proximal dendrites. We suggest that these cortical terminals bestow integrative abilities on SGI neurons.