Thirty cross-bred steers (initial BW 452.0 ± 12.1 kg) were used to investigate the effects of Mo water concentration on performance, carcass characteristics, and mineral status of feedlot steers. The experimental design was a randomized complete block design. Steers were blocked by weight and then divided into 2 weight blocks each consisting of 15 steers. Steers were randomly assigned within block to one of 5 treatments (3 steers/treatment per block). Water treatments consisted of: 1) 0.0 µg/L, 2) 160 µg/L, 3) 320 µg/L, 4) 480 µg/L, and 5) 960 µg/L of supplemental Mo added as Na2MoO4 to the drinking water. Steers were housed in individual pens (steer = experimental unit) that contained individual 265 L water tanks for monitoring water intake. Steers were fed a growing diet for 28 d and then transitioned to a finishing diet. Block 1 steers were fed for a total of 151 d and block 2 steers were fed for a total of 112 d. Daily water intake was recorded for each steer. Steers were individually weighed on 2 consecutive days at the beginning and end of the experiment and interim weights and jugular blood samples were obtained every 28 d. Liver biopsies were obtained on d 0 and 84 from each steer within each block. Steers were transported to a commercial abattoir, slaughtered, and individual carcass data and liver samples were collected. Initial BW was used as a covariate for statistical analysis of data and significance was determined at P ≤ 0.05. No differences were observed for final BW (P> 0.98). Overall ADG (P > 0.91), DMI (P > 0.92), feed efficiency (P > 0.94), water intake (P > 0.40), hot carcass weight (P > 0.98), dressing percentage (P > 0.98), yield grade (P > 0.91), and marbling score (P > 0.29) did not differ across treatments. Lastly, no treatment differences were observed for liver concentrations of Cu (P > 0.93), Mo (P > 0.90) and Zn (P > 0.86) or plasma concentrations of Cu (P > 0.42), Mo (P > 0.43) and Zn (P > 0.62). These data indicate that water Mo concentration, within the range studied, had no impact on performance, mineral status, water intake, and carcass characteristics in feedlot steers.
Thirty cross-bred steers (initial BW 452.0 ± 12.1 kg) were used to investigate the effects of Mo water concentration on performance, carcass characteristics, and mineral status of feedlot steers. The experimental design was a randomized complete block design. Steers were blocked by weight and then divided into 2 weight blocks each consisting of 15 steers. Steers were randomly assigned within block to one of 5 treatments (3 steers/treatment per block). Water treatments consisted of: 1) 0.0 µg/L, 2) 160 µg/L, 3) 320 µg/L, 4) 480 µg/L, and 5) 960 µg/L of supplemental Mo added as Na2MoO4 to the drinking water. Steers were housed in individual pens (steer = experimental unit) that contained individual 265 L water tanks for monitoring water intake. Steers were fed a growing diet for 28 d and then transitioned to a finishing diet. Block 1 steers were fed for a total of 151 d and block 2 steers were fed for a total of 112 d. Daily water intake was recorded for each steer. Steers were individually weighed on 2 consecutive days at the beginning and end of the experiment and interim weights and jugular blood samples were obtained every 28 d. Liver biopsies were obtained on d 0 and 84 from each steer within each block. Steers were transported to a commercial abattoir, slaughtered, and individual carcass data and liver samples were collected. Initial BW was used as a covariate for statistical analysis of data and significance was determined at P ≤ 0.05. No differences were observed for final BW (P> 0.98). Overall ADG (P > 0.91), DMI (P > 0.92), feed efficiency (P > 0.94), water intake (P > 0.40), hot carcass weight (P > 0.98), dressing percentage (P > 0.98), yield grade (P > 0.91), and marbling score (P > 0.29) did not differ across treatments. Lastly, no treatment differences were observed for liver concentrations of Cu (P > 0.93), Mo (P > 0.90) and Zn (P > 0.86) or plasma concentrations of Cu (P > 0.42), Mo (P > 0.43) and Zn (P > 0.62). These data indicate that water Mo concentration, within the range studied, had no impact on performance, mineral status, water intake, and carcass characteristics in feedlot steers.
The majority of Mo research has focused on the antagonist effect of Mo, alone or in combination with elevated dietary S, on Cu absorption and metabolism in ruminants. Diets containing both >5.0 mg of Mo/kg DM and >0.33% S have been reported to reduce the Cu status in cattle and sheep. Therefore, due to the potential for inducing Cu deficiency, Mo and S concentrations in the diet should be monitored and kept within appropriate values. Elevated sulfate concentrations in drinking water can also be detrimental to livestock production, especially in ruminants. High concentrations of sulfate in water have been extensively studied in cattle because high-sulfate water induces polioencephalomalacia in ruminants. However, little research has been conducted investigating the impact of Mo in water on Cu metabolism in ruminants. Based on the limited number of published experiments, it appears that Mo in drinking water may have a lower antagonistic impact on the Cu status in cattle when compared to Mo consumed in the diet. This response may be due to a certain percentage of water bypassing the rumen when consumed by ruminants. Therefore, the objective of this review was to examine the impact of Mo in drinking water on cattle performance and Mo and Cu metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.