Twelve 5-year-old beef steers, with an average weight of 2000 lbs., fitted with rumen canulae were used in a 4 × 4 incomplete Latin square design to examine the impact of the direct fed microbial Propionibacterium acidipropionici CP 88 (PA) on rumen fermentation characteristics, in vitro CH4, CO2, and N2 production, and in vivo CH4 and CO2 production. All steers were housed in the same pen equipped with eight GrowSafe feeding stations to monitor individual animal feed intake and one GreenFeed System to estimate individual animal CH4 and CO2 production. Steers were fed a corn-silage-based diet throughout the experiment. Treatments consisted of PA administered at: (1) control (0.0); (2) 1.0 × 108; (3) 1.0 × 109; and (4) 1.0 × 1010 cfu∙animal−1∙day (d)−1. Treatments were administered directly into the rumen as a single bolus dose daily. On day 7 and 14 of each period, rumen fluid was collected from each steer 2 h post treatment administration for VFA analysis and in vitro DM digestibility determination. Following a 14 d washout period, animal treatments were switched and the experiment repeated until the 4 × 4 Latin square was complete. In vivo propionic acid molar proportions and total VFA concentrations were greater (p < 0.05) in steers receiving PA when compared with controls. All other in vivo rumen fermentation characteristics were similar across treatments. In vitro DM disappearance (p < 0.05) and total VFA (p < 0.05) were greater and CH4 lesser (p < 0.04) in fermentation vessels incubated with rumen fluid from animals receiving PA when compared with controls. Dry matter disappearance (p < 0.03) and propionic acid molar proportions increased (p < 0.04) linearly as the dose of PA increased. In vitro total VFA tended (p < 0.08) to increase linearly and CH4 production per unit of DM digested tended (p < 0.09) to decrease quadratically in response to PA dose. All other in vitro rumen fermentation characteristics were similar across treatments. These data indicate that PA impacts in vivo and in vitro rumen fermentation characteristics.
Fifty-four multiparous beef cows with calves were used to evaluate the effects of Mo source (feed or water) on reproduction, mineral status, and performance over two cow-calf production cycles (553 days). Cows were stratified by age, body weight, liver Cu, and Mo status and were then randomly assigned to one of six treatment groups. Treatments were (1) negative control (NC; basal diet with no supplemental Mo or Cu), (2) positive control (NC + Cu; 3 mg of supplemental Cu/kg DM), (3) NC + 500 µg Mo/L from Na2MoO4·2H2O supplied in drinking water, (4) NC + 1000 µg Mo/L of Na2MoO4·2H2O supplied in drinking water, (5) NC + Mo 1000-water + 3 mg of supplemental Cu/kg DM, and (6) NC + 3.0 mg of supplemental Mo/kg diet DM from Na2MoO4·2H2O. Animals were allowed ad libitum access to both harvested grass hay (DM basis: 6.6% crude protein; 0.15% S, 6.7 mg Cu/kg, 2.4 mg Mo/kg) and water throughout the experiment. Calves were weaned at approximately 6 months of age each year. Dietary Cu concentration below 10.0 mg Cu/kg DM total diet reduced liver and plasma Cu concentrations to values indicative of a marginal Cu deficiency in beef cows. However, no production parameters measured in this experiment were affected by treatment. Results suggest that Mo supplemented in water or feed at the concentrations used in this experiment had minimal impact on Cu status and overall performance.
The majority of Mo research has focused on the antagonist effect of Mo, alone or in combination with elevated dietary S, on Cu absorption and metabolism in ruminants. Diets containing both >5.0 mg of Mo/kg DM and >0.33% S have been reported to reduce the Cu status in cattle and sheep. Therefore, due to the potential for inducing Cu deficiency, Mo and S concentrations in the diet should be monitored and kept within appropriate values. Elevated sulfate concentrations in drinking water can also be detrimental to livestock production, especially in ruminants. High concentrations of sulfate in water have been extensively studied in cattle because high-sulfate water induces polioencephalomalacia in ruminants. However, little research has been conducted investigating the impact of Mo in water on Cu metabolism in ruminants. Based on the limited number of published experiments, it appears that Mo in drinking water may have a lower antagonistic impact on the Cu status in cattle when compared to Mo consumed in the diet. This response may be due to a certain percentage of water bypassing the rumen when consumed by ruminants. Therefore, the objective of this review was to examine the impact of Mo in drinking water on cattle performance and Mo and Cu metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.