Seventy-two piglets (6.0 kg BW) were randomly distributed within six different dietary treatments to evaluate the effect of deoxynivalenol (DON) and the potential of four antioxidant feed additives in mitigating the adverse effects of DON on growth performances and oxidative status. Dietary treatments were as follows: control diet 0.8 mg/kg DON; contaminated diet (DON-contaminated diet) 3.1 mg/kg DON; and four contaminated diets, each supplemented with a different antioxidant feed additive, DON + vitamins, DON + organic selenium (Se)/glutathione (GSH), DON + quercetin, and DON + COMB (vitamins + Se/GSH + quercetin from the other treatments). Although DON was the main mycotoxin in the contaminated diet, this diet also contained 1.8 mg/kg of zearalenone (ZEN). The "mycotoxin" effects therefore included the combined effect of these two mycotoxins, DON, and ZEN. The DON-ZEN ingestion did not affect growth performances, average daily gain (ADG), average daily feed intake (ADFI), and feed efficiency (G:F ratio), but partially induced oxidative stress in weaned pigs as shown by increased malondialdehyde (MDA) content in the plasma and superoxide dismutase (SOD) activity in liver (P < 0.05). However, no change in the activity of other antioxidant enzymes or GSH concentrations was observed in plasma and liver of piglets fed the DON-contaminated diet (P > 0.05). Supplementation with individual antioxidant feed additive had a limited effect in weaned pigs fed DON-ZEN-contaminated diets. Combination of antioxidants (vitamins A, C, and E, quercetin, and organic Se/GSH) reduced plasma and liver MDA content and SOD activity in liver (P < 0.05) of piglets fed DON-ZEN-contaminated diets. Furthermore, this combination also reduced MDA content in the ileum (P < 0.05), although activity of glutathione peroxidases (GPx), SOD or catalase (CAT) in the ileum was not affected by DON-ZEN contamination or antioxidant supplements. In conclusion, DON-ZEN contamination induced oxidative stress in weaned pigs and combination of antioxidant feed additives restored partially the oxidative status. Further studies will be necessary to assess whether the effects of antioxidant feed additives on oxidative status are specific when feed is contaminated with DON-ZEN.
Two strains of Lactococcus lactis subsp. lactis (L. lactis KB and KBP) and one of L. lactis subsp. lactis biovar. diacetylactis (L. diacetylactis MD) were immobilized separately in kappa-carrageenan-locust bean gum gel beads. Continuous fermentations were carried out in supplemented whey permeate in a 1-L pH-controlled stirred tank reactor inoculated with a 30% (v/v) bead inoculum and a bead ratio of 55:30:15 for KB, KBP, and MD, respectively. The process demonstrated a high productivity and microbial stability during the 7-week continuous culture. Compared with previous experiments carried out with an inoculum bead ratio of 33:33:33 for KB, KBP, and MD beads, respectively, the modification of the inoculum bead ratio had apparently little effect on free and immobilized, total and specific populations. A dominant behavior of L. diacetylactis MD over the other strains of the mixed culture was observed both with free-cell populations in the effluent and with immobilized-cell populations. Additional experiments were carried out with other strain combinations for continuous inoculation-prefermentation of milk. The data also confirmed the dominance of L. diacetylactis during long-term continuous immobilized-cell fermentations. This dominance may be tentatively explained by the local competition involved in the development of the bead cross-contamination and in citrate utilization by L. diacetylactis strains. The gel beads demonstrated a high rheological stability during the 7-week continuous fermentation even at low KCl supplementation of the broth medium (25 mM KCl).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.