<p><strong>Abstract.</strong> City Geography Markup Language (CityGML) and Industry Foundation Class (IFC) are the two most popular data exchange format for the integration of Geographic Information System (GIS) and Building Information Modelling (BIM) respectively and has been identified by many researchers as an auspicious means of data interoperability between the two domains but with challenges on the compatibility between them. The main issue is the data loss in the process of information transformation. The success of integrating these two domains (GIS and BIM objects) is a great achievement toward solving problems in Architecture, Engineering and Construction (AEC), Facility Management (FM), Disaster Management (DM) sectors. Nevertheless, as we all know GIS and BIM are different fields used by different professionals using different software packages, used for different purposes, it is definitely face with many challenges including data interoperability, mismatch and loss of semantic information are bound to occur during the process of integration. In order to comprehend the two domains and their data models of CityGML and IFC. This paper review existing models on GIS and BIM developed by different researchers, the complementarity and compatibility of GIS and BIM on the previous integration techniques were also reviewed and finally, the paper review the integration of GIS and BIM at the data level aimed at solving different problems surrounding it by considering the transformation of coordinates at geometric level from CityGML to IFC, in order to achieve flow of information between GIS and BIM.</p>
Abstract. The effects of oil spills in the Niger Delta has caused unending menace to the quality of drinking water in most wells and boreholes of the area as most of the wells are shallow and are susceptible to contamination due to the nature of its Geology. The aim of this paper is to develop a database on how oil spills affects water quality which is one of the most crucial resources in the Niger Delta. The study uses existing oil spills data to show the areas and extent of oil pollution in the Niger Delta. Geospatial analysis was used to design an oil spill data base comprising the logical, physical, and conceptual data base design. Visio was used for the design of the entity relationship (ER) diagram of the study. The Kernel density and Getis-Ord G* statistic were used in GIS to map the oil spill areas in the region. Results of spatial spill distribution from the Kernel density and Getis-Ord G* statistic revealed that three states of the Niger Delta namely, Bayelsa, Rivers, and Delta states are the hottest spots for oil spill occurrences and distribution. The ER chart showed the relationships between the pollution sources, their pathways, and the receptors. The ER diagram developed could be of significance to environmentalists and other stakeholders in understanding the processes through which contaminants get to the various compartments of the earth system.
Abstract. Geographic information system (GIS) is known traditionally for the modelling of two-dimensional (2D) geospatial analysis and therefore present information about the extensive spatial framework. On the other hand, building information modelling (BIM) is digital representation of building life cycle. The increasing use of both BIM and GIS simultaneously because of their mutual relationship, as well as their similarities, has resulted in more relationships between both worlds, therefore the need for their integration. A significant purpose of these similarities is importing BIM data into GIS to significantly assist in different design-related issues. However, currently this is challenging due to the diversity between the two worlds which includes diversity in coordinate systems, three-dimensional (3D) geometry representation, and semantic mismatch. This paper describes an algorithm for the conversion of IFC data to CityGML in order to achieve the set goal of sharing information between BIM and GIS domains. The implementation of the programme developed using python was validated using an IFC model (block HO2) of a student’s hostel, Kolej Tun Fatima (KTF). The conversion is based on geometric and semantic information mapping and the use of 3D affine transformation of IFC data from local coordinate system (LCS) to CityGML world coordinate system (WCS) (EPSG:4236). In order to bridge the gap between the two data exchange formats of BIM and GIS, we conducted geometry and semantic mapping. In this paper, we limited the conversion of the IFC model on level of details 2 (LOD2). The conversion will serve as a bridge toward the development of a software that will perform the conversion to create a strong synergy between the two domains for purpose of sharing information.
Abstract. The integration of Geographic Information System (GIS) and the Building Information Modeling (BIM) referred to as the merging of the two systems for the purpose of data interoperability. The need to share information between the two systems is what motivated the integration process purposely for geospatial analysis. This can be achieved through their data exchange formats such as; City Markup Language (CityGML) and Industry Foundation Classes (IFC). The formats are the two most prominent key schemas of GIS and BIM systems respectively. The integration is a step towards information exchange or sharing (data interoperability) between the two systems. The selection of the two most prominent data exchange formats is as a result of their widespread applications in the GIS and BIM domains. However, the differences in geometric and the semantics information hinders data interoperability (information sharing) between GIS and BIM. Also, coupled with the difference in schema structure and the level of information richness between IFC and CityGML. This paper, propose a geometry transformation process that can be used to extract and transform IFC building objects to that of CityGML building objects to enable 3D model design and constructed using BIM tool to be easily reused in 3D GIS applications which will be able to support the CityGML model format. Where the geometric information will be extracted using the IFC tree-structure (hierarchy) and transformed to destination CityGML.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.