In these Lectures a method is described to analyze the effect of quantum fluctuations on topological defect backgrounds up to the one-loop level. The method is based on the spectral heat kernel/zeta function regularization procedure, and it is first applied to various types of kinks arising in several deformed linear and non-linear sigma models with different numbers of scalar fields. In the second part, the same conceptual framework is constructed for the topological solitons of the planar semilocal Abelian Higgs model, built from a doublet of complex scalar fields and one U(1) gauge field.
One-loop mass shifts to the classical masses of stable kinks arising in a massive non-linear S 2sigma model are computed. Ultraviolet divergences are controlled using the heat kernel/zeta function regularization method. A comparison between the results achieved from exact and high-temperature asymptotic heat traces is analyzed in depth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.