Further preliminary observations are reported of an experiment to examine the spread of infectivity and the occurrence of pathological changes in cattle exposed orally to infection with bovine spongiform encephalopathy. Calves were dosed at four months of age and clinically monitored groups were killed sequentially from two to 40 months after inoculation. Tissues were collected for bioassay, for histopathological examinations and for the detection of PrP. Previous reported observations have included the presence of infectivity in the distal ileum of cattle killed after six to 18 months, the earliest onset of clinical signs in an exposed animal after 35 months, and diagnostic histopathological changes in the brain, in association with clinical disease, after 36, 38 and 40 months. In spite of the relative inefficiency of the bioassay of scrapie-like agents across a species barrier the new observations confirm that the onset of clinical signs and pathological changes in the central nervous system (CNS) occur at approximately the same time. The earliest pathological change, the presence of abnormal PrP 32 months after inoculation, coincided with the earliest detected infectivity in the CNS and occurred shortly before there was evidence of typical spongiform changes in the brain 36 months after inoculation. Infectivity has now been demonstrated in the peripheral nervous system, in the cervical and thoracic dorsal root ganglia 32 to 40 months after inoculation and in the trigeminal ganglion 36 and 38 months after inoculation. At the time of writing evidence of infectivity in other tissues is confined to the distal ileum, not only after six to 18 months but also after 38 and 40 months, but these findings may be supplemented by the results of further mouse assays. Nevertheless, they are in general agreement with current knowledge of the pathogenesis of scrapie.
BackgroundThe majority of atypical bovine spongiform encephalopathy (BSE) cases so far identified worldwide have been detected by active surveillance. Consequently the volume and quality of material available for detailed characterisation is very limiting. Here we report on a small transmission study of both atypical forms, H- and L-type BSE, in cattle to provide tissue for test evaluation and research, and to generate clinical, molecular and pathological data in a standardised way to enable more robust comparison of the two variants with particular reference to those aspects most relevant to case ascertainment and confirmatory diagnosis within existing regulated surveillance programmes.ResultsTwo groups of four cattle, intracerebrally inoculated with L-type or H-type BSE, all presented with a nervous disease form with some similarities to classical BSE, which progressed to a more dull form in one animal from each group. Difficulty rising was a consistent feature of both disease forms and not seen in two BSE-free, non-inoculated cattle that served as controls. The pathology and molecular characteristics were distinct from classical BSE, and broadly consistent with published data, but with some variation in the pathological characteristics. Both atypical BSE types were readily detectable as BSE by current confirmatory methods using the medulla brain region at the obex, but making a clear diagnostic distinction between the forms was not consistently straightforward in this brain region. Cerebellum proved a more reliable sample for discrimination when using immunohistochemistry.ConclusionsThe prominent feature of difficulty rising in atypical BSE cases may explain the detection of naturally occurring cases in emergency slaughter cattle and fallen stock. Current confirmatory diagnostic methods are effective for the detection of such atypical cases, but consistently and correctly identifying the variant forms may require modifications to the sampling regimes and methods that are currently in use.
The dose-response of cattle exposed to the bovine spongiform encephalopathy (BSE) agent is an important component of modelling exposure risks for animals and humans and thereby, the modulation of surveillance and control strategies for BSE. In two experiments calves were dosed orally with a range of amounts of a pool of brainstems from BSE-affected cattle. Infectivity in the pool was determined by end-point titration in mice. Recipient cattle were monitored for clinical disease and, from the incidence of pathologically confirmed cases and their incubation periods (IPs), the attack rate and IP distribution according to dose were estimated. The dose at which 50 % of cattle would be clinically affected was estimated at 0.20 g brain material used in the experiment, with 95 % confidence intervals of 0.04-1.00 g. The IP was highly variable across all dose groups and followed a log-normal distribution, with decreasing mean as dose increased. There was no evidence of a threshold dose at which the probability of infection became vanishingly small, with 1/15 (7 %) of animals affected at the lowest dose (1 mg).
In this report we document the results of several independent studies testing the sensitivity, specificity and reliability of the Prionics Western blotting (PWB) procedure to detect bovine and ovine disease-specific, protease-resistant prion protein (PrP(Sc)). Validation of the technique was obtained by blind analysis of samples from cattle affected with bovine spongiform encephalopathy (BSE), clinically normal animals or cattle with neurological diseases unrelated to BSE. Overall, very high sensitivity, specificity and reliability was observed. It became clear that sampling of the correct brain region and the method used for protein extraction are important factors for correct diagnosis. Furthermore, we tested the usefulness of the PWB technique as an instrument for surveillance purposes. We analyzed animals from a culling scheme as well as older animals from abattoirs to determine the number of subclinical BSE cases detectable by histopathological examination, immunohistochemistry for PrP(Sc) and PWB. In both studies, BSE-affected animals with no overt clinical symptoms were detected. These results demonstrate the usefulness of the PWB procedure in surveillance systems serving as a rapid diagnostic tool to identify animals subclinically infected with BSE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.