Summary A proteolysis-inducing factor (PIF) isolated from a cachexia-inducing murne tumour (MAC16) produced a decrease in body weight (1.6 g, P. 0.01 compared with control subjects) within 24 h after i.v. administration to non-tumour-bearing mice. Weight loss was associated with significant decreases in the weight of the spleen and soleus and gastrocnemius muscles. with no effect on the weight of the heart or kidney and with an increase in weight of the liver. Protein degradation in isolated soleus muscle was signfficantly increased in mice bearing the MAC16 tumour. To define which proteolytic pathways contribute to this increase, soleus muscles from mice bearing the MAC16 tumour and non-tumour-bearing animals administered PIF were incubated under conditions that modify different proteolytic systems. In mice bearing the MAC16 tumour, there were increases in both cathepsin B and L, and the Ca2--dependent lysosomal and ATP-dependent pathways were found to contribute to the increased proteolysis; whereas, in PIF-injected animals, there was activation only of the ATP-dependent pathway. Further studies in mice bearing the MAC16 tumour have provided evidence for increased levels of ubiquitin-conjugated proteins and increased mRNA levels for the 14 kDa ubiquitin carrier protein E2 and the C9 proteasome subunit in gastrocnemius muscle, suggesting activation of the ATP-ubiquitin-dependent proteolytic pathway. A monoclonal antibody to PIF attenuated the enhanced protein degradation in soleus muscle from mice bearing the MAC16 tumour, confirming that PIF is responsible for the loss of skeletal muscle in cachectic mice.
Summary An attempt has been made to reverse cachexia and to selectively deprive the tumour of metabolic substrates for energy production by feeding a ketogenic regime, since ketone bodies are considered important in maintaining homeostasis during starvation. As a model we have used a transplantable mouse adenocarcinoma of the colon (MAC 16) which produces extensive weight loss without a reduction in food intake. When mice bearing the MAC16 tumour were fed on diets in which up to 80% of the energy was supplied as medium chain triglycerides (MCT) with or without arginine 3-hydroxybutyrate host weight loss was reduced in proportion to the fat content of the diet, and there was also a reduction in the percentage contribution of the tumour to the final body weight. The increase in carcass weight in tumour-bearing mice fed high levels of MCT was attributable to an increase in both the fat and the non-fat carcass mass. Blood levels of free fatty acids (FFA) were significantly reduced by MCT addition. The levels of both acetoacetate and 3-hydroxybutyrate were elevated in mice fed the high fat diets, and tumour-bearing mice fed the normal diet did not show increased plasma levels of ketone bodies over the non-tumour-bearing group despite the loss of carcass lipids. Both blood glucose and plasma insulin levels were reduced in mice bearing the MAC16 tumour and this was not significantly altered by feeding the high fat diets. The elevation in ketone bodies may account for the retention of both the fat and the non-fat carcass mass. This is the first example of an attempt to reverse cachexia by a diet based on metabolic differences between tumour and host tissues, which aims to selectively feed the host at the expense of the tumour.
Summary An antigen of apparent molecular weight of 24000, reactive with a murine monoclonal antibody, has been isolated from a cachexia-inducing tumour (MAC 16) and has been shown to initiate muscle protein degradation in vitro using isolated soleus muscle. Administration of this material to female NMRI mice (20 g) produced a pronounced depression in body weight (2.72 ± 0.14 g; P<0.005 from control) over a 24 h period. This weight loss was attenuated in mice pretreated with the monoclonal antibody (0.06 + 0.26 g over 24 h) and occurred without a reduction in food and water intake. There was no change in body water composition, and the major contribution to the decrease in body weight was a decrease in the non-fat carcass dry weight (mainly lean body mass). The plasma levels of glucose and most amino acids were also significantly depressed. The decrease in lean body mass was accounted for by an increase (by 50%) in protein degradation and a decrease (by 50%) in protein synthesis in gastrocnemius muscle. Protein degradation was significantly decreased and protein synthesis increased to control values in mice pretreated with the monoclonal antibody. Protein degradation initiated in vitro with the proteolysis-inducing factor was abolished in mice pretreated with eicosapentaenoic acid (EPA), which had been shown to prevent muscle wastage in mice bearing the MAC16 tumour. Protein degradation was associated with a significant elevation of prostaglandin E2 production by isolated soleus muscle, which was inhibited by both the monoclonal antibody and EPA. These results suggest that this material may be the humoral factor mediating changes in skeletal muscle protein homeostasis during the process of cancer cachexia in animals bearing the MAC16 tumour, and could potentially be involved in other cases of cachexia.
The aim of this study was to determine whether a ketogenic diet could decrease nitrogen losses in cachectic cancer patients and at the same time reduce the supply of glucose for tumor energy metabolism. Five patients with malignant disease and severe weight loss (mean 32%) were fed via a fine bore nasogastric tube. A normal diet was given for 6 d and this was followed by 7 d of an isonitrogenous, isocaloric, ketogenic diet. Both diets were well tolerated. At 7 d the mean ketone body concentration in the blood of patients fed the ketogenic diet was 1.21 +/- 0.33 mM. This ketosis was associated with a significant reduction of the concentration in blood of glucose, lactate, and pyruvate (p less than 0.05). There was, however, no significant alteration in host N balance or whole-body protein synthesis, degradation, or turnover rates. Whether the change from glucose- to fat-derived energy substrates might reduce tumor growth rates in the long term remains to be determined.
Summary The presence of succinyl-coenzyme A: acetoacetate CoA-transferase (3-oxo acid-CoA transferase), an initiator of ketone body utilization in non-hepatic tissue was examined in a number of animal and human tumours of peripheral tissues. While enzyme levels in heart, kidney, lymphocytes and bladder were high, the tumours contained low or non-detectable levels of transferase activity, comparable with that of normal liver. The activities of acetoacetyl-CoA thiolase paralleled that of the transferase, except for the high activity in liver, and in all cases the tumour content of the enzyme was lower than that of the brain. The activity of 3-hydroxybutyrate dehydrogenase was similar in both normal and tumour tissue. The results indicate that tumours of non-hepatic tissues may be unable to metabolize ketone-bodies and suggest a therapeutic strategy for selective starvation of the tumour by dietary modification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.