The authors report the infrared-to-visible frequency upconversion (UPC) process in Er3+ doped PbO–GeO2 glasses containing silver nanoparticles (NPs) with an average diameter of 2.2nm. The absorption spectra of the samples present a band centered at 470nm due to the surface plasmons associated with the NPs. The intensity of the band grows with increasing NP concentration. The experiments were performed by exciting the samples with a 980nm diode laser and observing the UPC emissions in the red-green region. The enhanced UPC intensity is attributed to the local field effect in the proximity of the NPs.
In this paper we present results on cooperative luminescence performed on Yb3+-doped
metaphosphate glasses under 980 nm excitation. We have measured emission
spectra and decay lifetimes in the visible and infrared regions as a
function of Yb concentration. It was observed that, up to 10% of Yb
concentration, cooperative emission increases while lifetime is observed to
decrease. Such behaviour is attributed to the Yb interaction with OH−
radicals and energy migration among Yb ions.
The Nd–Nd and Nd–Yb energy transfer processes are studied in lead fluoroindogallate glasses with the following molar composition: 30PbF2–20GaF3–15InF3–15ZnF2–(20–X)CaF2–XNdF3 (with X=0.1, 0.5, 1, 2, 4, and 5), 30PbF2–20GaF3–15InF3–15ZnF2–(20–X)CaF2–XYbF3 (with X=0.1, 0.5, 1, 2, 3, and 5), and 30PbF2–20GaF3–15InF3–15ZnF2–(19–X)CaF2–XYbF3–1NdF3 (with X=0.1, 0.5, 1, 2, 3, and 5.5). The Dexter, Yokota–Tanimoto, and Holstein formalisms were used to treat the experimental data. The following microparameters of energy transfer were obtained: CDD(Nd–Nd)≈7×10−40, CDA(Nd–Nd)=2.5×10−40, and CDA(Nd–Yb)≈3×10−40 cm6/s. It was also shown that the energy migration between Nd ions depends on the third power of temperature (T3) up to a saturation value of about 80 K. This behavior was attributed to the site to site energy migration. The Yb doped samples presented no nonradiative losses for the Yb3+ emission at 969 nm.
In this work, two sets of lead fluoroindogallate glasses were studied with the aim of using them as active media for laser devices at the mid infrared (∼2.8 μm) and visible (∼0.54 μm) regions. The infrared and upconverted emissions of Er3+ in single and Er3+:Yb3+ codoped samples were analyzed, and it was observed that the best set of samples for 2.8 μm emission was the single doped one, and that as the upconversion (anti-Stokes luminescence) increased as a function of Yb3+ concentration, the infrared emission decreased in the same manner. The results suggest that the codoping with Yb3+ favors only the upconversion processes which depopulate the I11/24 level, reducing the 2.8 μm emission intensity. On the other hand, the Yb3+ codoping will certainly increase the efficiency of an upconversion based device. Quantum efficiencies of infrared emissions and radiative lifetimes were calculated by using the Judd–Ofelt approximation. Er3+–Er3+ and Er3+–Yb3+ energy transfer efficiencies were calculated using the measured lifetimes of the levels involved in the energy transfer processes.
In this work, the thermal lens (TL) technique is used to determine the fluorescence quantum efficiency (η) of Yb3+-doped phosphate glasses. The role of nonradiative processes such as energy migration among Yb ions and the interaction with OH− radicals are presented and discussed. Two sets of samples with the same Yb concentrations were prepared, one at ambient conditions (set A) and the other in N2 atmosphere (set N). The TL technique was shown to be very sensitive to the amount of OH radicals. Moreover, the η values obtained from the TL method are in good agreement with the calculate ones (based on lifetime measurements). The results indicate that TL can be a valuable technique to evaluate the quantum efficiency and nonradiative rates in ion-doped materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.