Abstract-Using calibrated simulations, we report a detailed study of the doping-less tunnel field effect transistor (TFET) on a thin intrinsic silicon film using charge plasma concept. Without the need for any doping, the source and drain regions are formed using the charge plasma concept by choosing appropriate work functions for the source and drain metal electrodes. Our results show that the performance of the doping-less TFET is similar to that of a corresponding doped TFET. The doping-less TFET is expected to be free from problems associated with random dopant fluctuations. Further, fabrication of doping-less TFET does not require high-temperature doping/annealing processes and therefore, cuts down the thermal budget opening up the possibilities for fabricating TFETs on single crystal silicon-onglass substrates formed by wafer scale epitaxial transfer.
Abstract-In this paper, we propose the application of a Dual Material Gate (DMG) in a Tunnel Field Effect Transistor (TFET) to simultaneously optimize the on-current, the off-current and the threshold voltage, and also improve the average subthreshold slope, the nature of the output characteristics and the immunity against the DIBL effects. We demonstrate that if appropriate work-functions are chosen for the gate materials on the source side and the drain side, the tunnel field effect transistor shows a significantly improved performance. We apply the technique of DMG in a Strained Double Gate Tunnel Field Effect Transistor with a high-k gate dielectric to show an overall improvement in the characteristics of the device along with achieving a good on-current and an excellent average subthreshold slope. The results show that the DMG technique can be applied to TFETs with different channel materials, channel lengths, gate-oxide materials, gate-oxide thicknesses and power supply levels to achieve significant gains in the overall device characteristics.
This paper examines the performance degradation of a MOS device fabricated on silicon-on-insulator (SOI) due to the undesirable short-channel effects (SCE) as the channel length is scaled to meet the increasing demand for high-speed high-performing ULSI applications. The review assesses recent proposals to circumvent the SCE in SOI MOSFETs and a short evaluation of strengths and weaknesses specific to each attempt is presented. A new device structure called the dual-material gate (DMG) SOI MOSFET is discussed and its efficacy in suppressing SCEs such as drain-induced barrier lowering (DIBL), channel length modulation (CLM) and hot-carrier effects, all of which affect the reliability of ultra-small geometry MOSFETs, is assessed.
A distinctive approach for forming a lateral Bipolar Charge Plasma Transistor (BCPT) is explored using 2-D simulations. Different metal work-function electrodes are used to induce n-and p-type charge plasma layers on undoped SOI to form the emitter, base and collector regions of a lateral NPN transistor. Electrical characteristics of the proposed device are simulated and compared with that of a conventionally doped lateral bipolar junction transistor with identical dimensions. Our simulation results demonstrate that the BCPT concept will help us realize a superior bipolar transistor in terms of a high current gain compared to a conventional BJT. This BCPT concept is suitable in overcoming doping issues such as dopant activation and high-thermal budgets which are serious issues in ultra thin SOI structures.
In this paper, we have demonstrated that overlapping the gate on the drain can suppress the ambipolar conduction, which is an inherent property of a tunnel field effect transistor (TFET). Unlike in the conventional TFET where the gate controls the tunneling barrier width at both source-channel and channel-drain interfaces for different polarity of gate voltage, overlapping the gate on the drain limits the gate to control only the tunneling barrier width at the source-channel interface irrespective of the polarity of the gate voltage. As a result, the proposed overlapping gate-on-drain TFET exhibits suppressed ambipolar conduction even when the drain doping is as high as 1 × 10 19 cm −3 .INDEX TERMS Ambipolarity, overlapping gate-on-drain, TFET, tunneling barrier width, overlap length.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.