The hepatic drug-metabolizing cytochrome P-450 (CYP) enzymes are down-regulated during inflammation. In vitro studies with hepatocytes have shown that the cytokines released during inflammatory responses are largely responsible for this CYP repression. However, the signaling pathways and the cytokine-activated factors involved remain to be properly identified. Our research has focused on the negative regulation of CYP3A4 (the major drug-metabolizing human CYP) by interleukin 6 (IL-6) (the principal regulator of the hepatic acute-phase response). CYP3A4 down-regulation by IL-6 requires activation of the glycoprotein receptor gp130; however, it does not proceed through the JAK/STAT pathway, as demonstrated by the overexpression of a dominant-negative STAT3 factor by means of an adenoviral vector. The involvement of IL-6-activated kinases such as extracellular signal-regulated kinase ERK1/2 or p38 is also unlikely, as evidenced by the use of specific chemical inhibitors. It is noteworthy that IL-6 caused a moderated induction in the mRNA of the transcription factor C/EBPbeta (CCAAT-enhancer binding protein beta) and a marked increase in the translation of C/EBPbeta-LIP, a 20-kDa C/EBPbeta isoform lacking a transactivation domain. Adenovirus-mediated expression of C/EBPbeta-LIP caused a dose-dependent repression of CYP3A4 mRNA, whereas overexpression C/EBPalpha and C/EBPb-LAP (35 kDa) caused a significant induction. Our results support the idea that IL-6 down-regulates CYP3A4 through translational induction of C/EBPbeta-LIP, which competes with and antagonizes constitutive C/EBP transactivators. From a clinical point of view, these findings could be relevant in the development of therapeutic cytokines with a less repressive effect on hepatic drug-metabolizing enzymes.
CYP3A4 is the most abundantly expressed drug-metabolizing P450 enzyme in human liver and contributes to the metabolism of a large number of drugs in use today. CYP3A4 is constitutively expressed in adult hepatocytes but it can also be transcriptionally induced by a variety of structurally diverse xenochemicals. CYP3A4 strongly contributes to the important variability in the therapeutic and toxic effects of drugs owing to the major role it plays in xenobiotic metabolism and the large intra- and inter-individual variability to which it is subjected. The functional examination of up to 13 kb of the CYP3A4 5'-flanking region has revealed that the regulation of this gene is a complex issue, with numerous transcription factors interacting with multiple promoter/enhancer elements. This also suggests that a high degree of human variability in the hepatic CYP3A4 expression could result from regulatory polymorphisms. Several transcription factors and nuclear receptors contribute to the hepatic-specific expression of CYP3A4, including: C/EBPalpha, C/EBPbeta, HNF4alpha, HNF3gamma, CAR and PXR. The induction phenomenon and the down-regulation of CYP3A4 in pathophysiological conditions, such as inflammatory situations, are key processes involved in the toxic vs. therapeutic effects of many drugs. Since CYP3A4 variation may affect the efficacy and toxicity of new drugs, development of reliable hepatic models for the assessment and prediction of the role of CYP3A4 in drug metabolism are important for drug development. Cultured human hepatocytes are the closest model to the human liver as far as CYP3A4 regulation and induction are concerned. However, other hepatic models should be considered in drug development for screening purposes owing to the limited availability of human hepatocytes.
The purpose of this study was to investigate the significance of the sequential changes in proinflammatory cytokines observed in the plasma of patients early after myocardial infarct: a rise in interleukin (IL)-1 beta (308 +/- 126 vs. 141 +/- 78 pg/ml, P < 0.01) between 0 and 2 h followed by an IL-6 peak (49 +/- 24 vs. 14.5 +/- 13 pg/ml, P < 0.01) 4-9 h later. No significant changes in tumor necrosis factor-alpha (TNF-alpha) were observed at this early stage. The linkage between IL-1 beta and IL-6 secretions is supported by 1) the ability of patient's plasma drawn early after myocardial infarction to induce IL-6 mRNA and protein synthesis in cells that may be potential targets in vivo (fibroblasts and endothelial cells), 2) suppression of this activity by antibodies against IL-1 beta, and 3) a delay between IL-1 beta and IL-6 peaks in vivo (4-9 h), which is similar to the time required for maximal IL-6 production in IL-1 beta stimulated target cells in vitro (6 h). This sequential signaling might serve as the basis for an amplification mechanism of proinflammatory cytokines. In fact, a much greater synthesis of C-reactive protein was observed in hepatocytes when stimulated with conditioned medium of fibroblasts or endothelial cells that had previously been incubated with plasma of patients. The results of our work strongly suggest that, by inducing IL-6 in potential target cells, IL-1 beta could act as the primary, but indirect, signal that stimulates acute-phase protein synthesis after myocardial injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.