The electrical properties of CdTe/CdS solar cells grown by metal organic chemical vapor deposition were investigated by a technique of impedance measurements under varied intensity of AM1.5 illumination. A generalized impedance model was developed and applied to a series of CdTe/CdS cells with variations in structure and doping. The light measurements were compared to the conventional ac measurements in dark under varied dc bias, using the same methodology for equivalent circuit analysis in both cases. Detailed information on the properties of the device structure was obtained, including the properties of the main p-n junction under light, minority carrier lifetime, back contact, as well as the effect of the blocking ZnO layer incorporated between the transparent conductor and CdS layers. In particular, the comparison between samples with different chemical concentrations of As has shown that the total device impedance and the series resistance are strongly increased at lower As densities, resulting in the lower collection current and efficiencies. At the same time the minority carrier lifetime was found to be one order of magnitude larger for the lowest value of As density, when compared to the optimized devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.