Probing the hybridized magnetic interface between organic semiconductor (OSC) and ferromagnetic (FM) layers has drawn significant attention in recent years because of their potential in spintronic applications. Recent studies demonstrate various aspects of organic spintronics such as magnetoresistance, induced interface moment etc. However, not much work has been performed to investigate the implications of such OSC/FM interfaces on the magnetization reversal and domain structure which are the utmost requirements for any applications. Here, we show that non-magnetic Fullerene can obtain non-negligible magnetic moment at the interface of Fe(15 nm)/C60(40 nm) bilayer. This leads to substantial effect on both the magnetic domain structure as well as the magnetization reversal when compared to a single layer of Fe(15 nm). This is corroborated by the polarized neutron reflectivity (PNR) data which indicates presence of hybridization at the interface by the reduction of magnetic moment in Fe. Afterwards, upto 1.9 nm of C60 near the interface exhibits magnetic moment. From the PNR measurements it was found that the magnetic C60 layer prefers to be aligned anti-parallel with the Fe layer at the remanant state. The later observation has been confirmed by domain imaging via magneto-optic Kerr microscopy.
Growth temperature dependant surface morphology and crystalline properties of the epitaxial GaN layers grown on pre-nitridated sapphire (0001) substrates by laser molecular beam epitaxy (LMBE) were investigated in the range of 500–750 °C. The grown GaN films were characterized using high resolution x-ray diffraction, atomic force microscopy (AFM), micro-Raman spectroscopy, and secondary ion mass spectroscopy (SIMS). The x-ray rocking curve full width at a half maximum (FWHM) value for (0002) reflection dramatically decreased from 1582 arc sec to 153 arc sec when the growth temperature was increased from 500 °C to 600 °C and the value further decreased with increase of growth temperature up to 720 °C. A highly c-axis oriented GaN epitaxial film was obtained at 720 °C with a (0002) plane rocking curve FWHM value as low as 102 arc sec. From AFM studies, it is observed that the GaN grain size also increased with increasing growth temperature and flat, large lateral grains of size 200-300 nm was obtained for the film grown at 720 °C. The micro-Raman spectroscopy studies also exhibited the high-quality wurtzite nature of GaN film grown on sapphire at 720 °C. The SIMS measurements revealed a non-traceable amount of background oxygen impurity in the grown GaN films. The results show that the growth temperature strongly influences the surface morphology and crystalline quality of the epitaxial GaN films on sapphire grown by LMBE
Manganese-doped sodium zinc phosphate (NaZnPO 4 :Mn) phosphor with exceptional features having ultra-violet (UV) to visible absorption (300-470 nm), yellow-green (~543 nm) broad-band photoluminescence (PL) and appreciable color co-ordinates (x=0.39, y=0.58) is reported. It has a crystal structure consisting of discrete PO 4 tetrahedra linked by ZnO 4 and NaO 4 distorted tetrahedral such that three tetrahedra, one of each kind, share
A simple approach is proposed for obtaining low threshold field electron emission from large area diamond-like carbon (DLC) thin films by sandwiching either Ag dots or a thin Ag layer between DLC and nitrogen containing DLC films. The introduction of silver and nitrogen is found to reduce the threshold field for emission to under 6 V/m representing a near 46% reduction when compared with unmodified films. The reduction in the threshold field is correlated with the morphology, microstructure, interface and bonding environment of the films.We find modifications to the structure of the DLC films through promotion of metal-induced sp 2 bonding and the introduction of surface asperities, which significantly reduce the value of the threshold field. This can lead to the next generation large area simple and inexpensive field emission devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.