An algorithm involving classical molecular dynamics simulations with mapping and reverse mapping procedure is here suggested to simulate the crosslinking of the polystyrene dissolved in dichloroethane by monochlorodimethyl ether. The algorithm comprises consecutive stages: molecular dynamics atomistic simulation of a polystyrene solution, the mapping of atomistic structure onto coarse-grained model, the crosslink formation, the reverse mapping, and finally relaxation of the structure dissolved in dichloroethane and in dry state. The calculated values of the specific volume and the elastic modulus are in reasonable quantitative correspondence with experimental data.
Concentrated solutions of amphiphilic macromolecules with local helical structure were studied by means of molecular dynamic simulations. It is shown that in poor solvent the macromolecules are assembled into wire-like aggregates having complex core-shell structure. The core consists of a hydrophobic backbone of the chains which intertwine around each other. It is protected by the shell of hydrophilic side groups. In racemic mixture of right-hand and left-hand helix macromolecules the wire-like complex is a chain of braid bundles of macromolecules with the same chirality stacking at their ends. The average number of macromolecules in the wire cross-section is close to that of separate bundles observed in dilute solutions of such macromolecules. The effects described here could serve as a simple model of self-organization in solutions of macromolecules with local helical structure.
A mesoscopic model of poly(lactic acid) is developed where the polymer is represented as an A-graft-B chain with monomer units consisting of two covalently connected beads. A coarse-graining algorithm is proposed to convert an atomistic model of PLA into a coarse-grained one. The developed model is based on atomistic simulations of oligolactides to take into account terminal groups correctly. It was used for coarse-grained simulations of polylactide. Gyration radii and end to end distances of polymer chains as well as the density of the polymer melt are shown to be in a good agreement with those obtained from atomistic simulations. The thermal expansion coefficients of the OLA melts calculated using the coarse-grained model are in reasonable agreement with those obtained from all-atom molecular dynamics. The model provides a 17-fold speedup compared with atomistic calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.