SummaryThe recent invasion by Ambrosia artemisiifolia (common ragweed) has, like no other plant, raised the awareness of invasive plants in Europe. The main concerns regarding this plant are that it produces a large amount of highly allergenic pollen that causes high rates of sensitisation among humans, but also A. artemisiifolia is increasingly becoming a major weed in agriculture. Recently, chemical and mechanical control methods have been developed and partially implemented in Europe, but sustainable control strategies to mitigate its spread into areas not yet invaded and to reduce its abundance in badly infested areas are lacking. One management tool, not yet implemented in Europe but successfully applied in Australia, is biological control. Almost all natural enemies that have colonised A. artemisiifolia in Europe are polyphagous and cause little damage, rendering them unsuitable for a system management approach. Two fungal pathogens have been reported to adversely impact A. artemisiifolia in the introduced range, but their biology makes them unsuitable for mass production and application as a mycoherbicide. In the native range of A. artemisiifolia, on the other hand, a number of herbivores and pathogens associated with this plant have a very narrow host range and reduce pollen and seed production, the stage most sensitive for long-term population management of this winter annual. We discuss and propose a prioritisation of these biological control candidates for a classical or inundative biological control approach against A. artemisiifolia in Europe, capitalising on past experiences from North America, Asia and Australia.
Matrix-assisted laser-desorption and ionization time-of-flight mass spectrometry prepares proteins intact in the gas phase with predominantly a single positive charge. The times-of-flight of charged proteins along a tube held at high vacuum after acceleration in an electrical field are proportional to the square root of the mass-over-charge ratios for the proteins, thereby allowing a mass spectrum to be generated, which can then be used to characterize or identify a protein-containing sample. Several sample-preparation methods are currently available but not all of these are applicable to some forms of fungal biomass and few of these are well suited to the analysis of plant or insect material. We have therefore developed a simplified method that: lyses cells, selectively solubilizes basic proteins, dissolves matrix to a suitable concentration, generates spectra with good intensity and peak richness, costs no more (and generally less) than current methods, and is not constrained in terms of throughput by the availability of centrifuges. Using this method, and a reagent formulation comprising α-cyano-4-hydroxycinnamic acid matrix close to saturation in 60%–65% (v/v) acetonitrile in water containing 2.5% (v/v) trifluoroacetic acid, we have been able to differentiate between strains for a representative subset of aflatoxin-producing and aflatoxin-non-producing strains of
Aspergillus
fungi, to differentiate between Indian and Pakistani strains of Himalayan balsam rust, to differentiate between closely-related
Crassula
spp. and regional biotypes of
Crassula helmsii
, and to differentiate between rubbervine introduced into Australia and Brazil. We have also analyzed fall armyworm and stem-borer samples stored in 70% (v/v) ethanol and old dried insect specimens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.