We report the first results of a light weakly interacting massive particles (WIMPs) search from the CDEX-10 experiment with a 10 kg germanium detector array immersed in liquid nitrogen at the China Jinping Underground Laboratory with a physics data size of 102.8 kg day. At an analysis threshold of 160 eVee, improved limits of 8×10^{-42} and 3×10^{-36} cm^{2} at a 90% confidence level on spin-independent and spin-dependent WIMP-nucleon cross sections, respectively, at a WIMP mass (m_{χ}) of 5 GeV/c^{2} are achieved. The lower reach of m_{χ} is extended to 2 GeV/c^{2}.
We report results on the searches of weakly interacting massive particles (WIMPs) with sub-GeV masses (m χ) via WIMP-nucleus spin-independent scattering with Migdal effect incorporated. Analysis on time-integrated (TI) and annual modulation (AM) effects on CDEX-1B data are performed, with 737.1 kg day exposure and 160 eVee threshold for TI analysis, and 1107.5 kg day exposure and 250 eVee threshold for AM analysis. The sensitive windows in m χ are expanded by an order of magnitude to lower DM masses with Migdal effect incorporated. New limits on σ SI χN at 90% confidence level are derived as 2 × 10 −32 ∼ 7 × 10 −35 cm 2 for TI analysis at m χ ∼ 50-180 MeV=c 2 , and 3 × 10 −32 ∼ 9 × 10 −38 cm 2 for AM analysis at m χ ∼ 75 MeV=c 2-3.0 GeV=c 2 .
We report results of a search for light Dark Matter WIMPs with CDEX-1 experiment at the China Jinping Underground Laboratory, based on 53.9 kg-days of data from a p-type point-contact germanium detector enclosed by a NaI(Tl) crystal scintillator as anti-Compton detector. The event rate and spectrum above the analysis threshold of 475 eVee are consistent with the understood background model. Part of the allowed regions for WIMP-nucleus coherent elastic scattering at WIMP mass of 6-20 GeV are probed and excluded. Independent of interaction channels, this result contradicts the interpretation that the anomalous excesses of the CoGeNT experiment are induced by Dark Matter, since identical detector techniques are used in both experiments. PACS numbers: 95.35.+d, 98.70.Vc
The CDEX-1 experiment conducted a search of low-mass (< 10 GeV/c 2 ) Weakly Interacting Massive Particles (WIMPs) dark matter at the China Jinping Underground Laboratory using a ptype point-contact germanium detector with a fiducial mass of 915 g at a physics analysis threshold of 475 eVee. We report the hardware set-up, detector characterization, data acquisition and analysis procedures of this experiment. No excess of unidentified events are observed after subtraction of known background. Using 335.6 kg-days of data, exclusion constraints on the WIMP-nucleon spinindependent and spin-dependent couplings are derived.PACS numbers: 95.35.+d, 98.70.Vc
Germanium ionization detectors with sensitivities as low as 100 eVee (electron-equivalent energy) open new windows for studies on neutrino and dark matter physics. The relevant physics subjects are summarized. The detectors have to measure physics signals whose amplitude is comparable to that of pedestal electronic noise. To fully exploit this new detector technique, various experimental issues including quenching factors, energy reconstruction and calibration, signal triggering and selection as well as evaluation of their associated efficiencies have to be attended. The efforts and results of a research program to address these challenges are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.