The article presents the results of empirical research and their analysis regarding the impact of diesel oil and diesel oil mixture with bioethanol on coking the test injector nozzles of the XUD9 engine from PSA. The research included three fuel deals: diesel fuel as the base fuel and diesel oil mix with ONE10 bioethanol (10% bioethanol plus diesel oil (V/V)), ONE20 (20% bioethanol plus diesel oil (V/V)). They were conducted on the basis of CEC PF-023 developed by CEC (Coordinating European Council). Each of the above-mentioned fuels was tested using a new set of injectors. The propensity of the fuel for coking the injector tips was expressed as a percentage reduction in the air flow through the nozzles of each injector for the given sheer increments. The test result was the average percentage of airflow reduction for all nozzles at 0.1 mm spike increments and was measured according to ISO 4010 "Diesel engines. Calibrating nozzle, delay pintle type”. The test results for individual atomizers of the above-mentioned test engine in the area of sediment formation from flowing fuel shown a lower tendency to coke the injectors using diesel fuel-bioethanol in comparison to the use of pure diesel oil. Based on the CEC PF-023 test, it can be noticed that the level of contamination of the tested injectors for ONE10 fuel is about 3% lower, and for ONE20 fuel is about 4% lower than the level of pollution for diesel fuel.
The presented study describes proprietary calculation methods that simulate the process of storing nitrogen dioxide elevation in a catalytic LNT reactor. The first section’s points of reference are the achievements of the article’s authors and the possibility of modeling NO2 adsorption processes in LNT reactors. The rest of the article presents model calculations (proposed by the authors) of the course of the NO2 storage process in LNT reactors. It considers one in its transition period, affecting the improvement and duration of the adsorption process. The conclusion presents selected results of simulation calculations obtained with the help of the equations’ authors and an evaluation of the results. A review of theoretical considerations is consistent with the experimental data, suggesting that the proposed computational solution may be used in future analytical validity assessments of LNT reactor tools under operating conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.