a b s t r a c tIn this paper, He's Frequency-Amplitude Formulation (HFAF) and He's Energy Balance Method (HEBM) are employed to solve the generalized Duffing equation in the form ofFor any arbitrary power of n, a frequency analysis is carried out and the relationship between the natural frequency and the initial amplitude is obtained in analytical form. Accuracy and validity of the proposed techniques are then verified by comparing the numerical results obtained based on the HFAF, HEBM and exact integration method. Numerical simulations are extended for even very strong nonlinearities and very good correlations are achieved between the numerical results.
The max-min approach is applied to mathematical models of some nonlinear oscillations. The models are regarding to three different forms that are governed by nonlinear ordinary differential equations. In this context, the strongly nonlinear Duffing oscillator with third, fifth, and seventh powers of the amplitude, the pendulum attached to a rotating rigid frame and the cubic Duffing oscillator with discontinuity are taken into consideration. The obtained results via the approach are compared with ones achieved utilizing other techniques. The results indicate that the approach has a good agreement with other well-known methods. He's max-min approach is a promising technique and can be successfully exerted to a lot of practical engineering and physical problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.