Terahertz and infrared radiation have unique properties applicable to the field of surveillance and security systems. We investigated the possibility of detecting potentially dangerous objects covered by various types of clothing using passive imagers operating at 1.2 mm (250 GHz) and long-wavelength infrared at 6-15 μm (20-50 THz). We developed a measurement methodology that assumes to investigate theoretical limitations, performance of imagers, and physical properties of fabrics. To evaluate stability of the detection capabilities of imagers, we performed measurement sessions each lasting 30 min. We present a theoretical comparison of the two spectra and results of experiments using state-of-the-art equipment.
Modern infrared cameras are constructed with two main types of infrared detectors: photon detectors and thermal detectors. Because of economic reasons, vast numbers of modern thermal cameras are constructed with the use of infrared microbolometric detectors which belong to the group of thermal detectors. Thermal detectors detect incident infrared radiation by measuring changes of temperature on the surface of a special micro-bridge structure. Thermal detectors, like microbolometric detectors on one hand should be sensitive to changing temperature to accurately measure incoming infrared radiation from the observed scene, on the other hand there are many other phenomena that change the temperature of the detector and influence the overall response of the detector. In order to construct an accurate infrared camera, there is a need to evaluate these phenomena and quantify their influence. In the article the phenomenon of self heating due to the operation of the readout circuit is analyzed on an UL 03 19 1 detector. The theoretical analysis is compared with the results of conducted measurements. Measurements with a type SC7900VL thermographic camera were performed to measure the thermodynamic behavior of the UL 03 19 1 detector array.
The article presents the detection of gases using an infrared imaging Fourier-transform spectrometer (IFTS). The Telops company has developed the IFTS instrument HyperCam, which is offered as a short-or long-wave infrared device. The principle of HyperCam operation and methodology of gas detection has been shown in the paper, as well as theoretical evaluation of gas detection possibility. Calculations of the optical path between the IFTS device, cloud of gases and background have been also discussed. The variation of a signal reaching the IFTS caused by the presence of a gas has been calculated and compared with the reference signal obtained without the presence of a gas in IFTS's field of view. Verification of the theoretical result has been made by laboratory measurements. Some results of the detection of various types of gases has been also included in the paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.