Modern infrared cameras are constructed with two main types of infrared detectors: photon detectors and thermal detectors. Because of economic reasons, vast numbers of modern thermal cameras are constructed with the use of infrared microbolometric detectors which belong to the group of thermal detectors. Thermal detectors detect incident infrared radiation by measuring changes of temperature on the surface of a special micro-bridge structure. Thermal detectors, like microbolometric detectors on one hand should be sensitive to changing temperature to accurately measure incoming infrared radiation from the observed scene, on the other hand there are many other phenomena that change the temperature of the detector and influence the overall response of the detector. In order to construct an accurate infrared camera, there is a need to evaluate these phenomena and quantify their influence. In the article the phenomenon of self heating due to the operation of the readout circuit is analyzed on an UL 03 19 1 detector. The theoretical analysis is compared with the results of conducted measurements. Measurements with a type SC7900VL thermographic camera were performed to measure the thermodynamic behavior of the UL 03 19 1 detector array.
In the article a non-uniformity correction method is presented which allows to compensate for the influence of detector's temperature drift. For this purpose, dependency between output signal value and the temperature of the detector array was investigated. Additionally the influence of the temperature on the Offset and Gain coefficients was measured. Presented method utilizes estimated dependency between output signal of detectors and their temperature. In the presented method, the shutter is used for establishing signal reference. Thermoelectric cooler is used for changing the temperature of the detector array.
The proposed StegoFrameOrder (SFO) method enables the transmission of covert data in wireless computer networks exploiting non-deterministic algorithms of medium access (such as the distributed coordination function), especially in IEEE 802.11 networks. Such a covert channel enables the possibility of leaking crucial information outside secured network in a manner that is difficult to detect. The SFO method embeds hidden bits of information in the relative order of frames transmitted by wireless terminals operating on the same radio channel. The paper presents an idea of this covert channel, its implementation, and possible variants. The paper also discusses implementing the SFO method in a real environment and the experiments performed in the real-world scenario.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.