& High performance machining of complex free form surfaces is very critical in many different industries. In this research, an advanced mathematical model of cutting forces that is based on the kinematics and mechanics of the 3D sculptured surface machining is integrated with CAM packages in order to predict the complex tool-workpiece engagements and machining forces for any tool path. Machined 3D free form topographies and distributions of errors between the desired CAD and machined surfaces are also predicted in advance. Now, an evaluation of different tool path strategies for 3D complex sculptured surfaces can be made. Theoretical simulations of forces and surface topographies for different tool paths are presented and compared with experimental measurements.
& This article presents mathematical models of cutting forces and surface-form errors for machining of free-form surfaces. Besides the predictive models of cutting forces and surface deflections, a newly developed force based feedrate scheduling (FFS) technique is compared with material removal rate (MRR) based feedrate scheduling method that was used in feedrate optimization packages. With the experimental validations in free-form surfaces, it is shown that the mechanic models predict the forces and surface-form errors quite well. Moreover, by modifying the CNC programs with the new FFS technique, cycle times of the free-form parts can be decreased significantly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.