In this study, for the first time, in particular to astrophysics and fusion studies, how atomic nuclei embedded in the plasma environment are affected by plasma are systematically analysed. The related interactions in plasma environments considered as Debye and quantum plasma are depicted by more general exponential cosine screened Coulomb (MGECSC) potential. The plasma effects on the change of nuclear energy levels are probed through computations performed within the nuclear shell-model framework. For this purpose, the single-particle energy (spe) values to be used in the calculations are obtained by considering the modified Woods-Saxon (WS) potential due to shielding effect of plasma environment. As the modification in question is executed on Coulomb interaction term in WS potential, the computations are carried out for 18 Ne nucleus which has two valence protons. Under the influence of the plasma, it is confirmed that the spe's change within certain limit value ranges. When considering the nuclear shell-model for the related computing, it is clear that this change leads to an obvious shifting in the energies of the nuclear states. It is observed that proton spe values are sensitive to plasma shielding effect, and shielding effect has a significant potent on the ground-state and excited energy states of the nucleus. In particular, the groundstate binding energies are determined to be extremely sensitive to the plasma shielding parameters. Plasma environments affect the proton spe and ground state energy (gse) in the same way. The alternative to each other of plasma shielding parameters on the spe, gse and excited energy levels is also analysed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.