Packed bed reactors are the most frequently used devices to perform heterogeneously catalyzed reactions on industrial scales. An industrial real-life heterogeneous catalysis is complex process that combines fully three-dimensional mass, momentum and energy transport on several scales. In the present work, we leverage our previously developed CFD solver for non-isothermal heterogeneously catalyzed reactive flow based on the finite volume method and couple it with our in-house DEM-based method for preparation of random packed beds. The resulting framework is verified in the simplified cases against available analytical solutions and correlations and is used to study an industrially-relevant case of ethylene oxychlorination performed in a tubular packed bed comprising CuCl₂-coated catalyst carrying particles. In particular, we compare properties of three different industrially used catalyst carrying particles: Raschig rings, Reformax, and Wagon wheels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.