As a neglected zoonotic disease, rabies causes approximately 5.9 × 104 human deaths annually, primarily affecting low- and middle-income countries in Asia and Africa. In those regions, insufficient surveillance is hampering adequate medical intervention and is driving the vicious cycle of neglect. Where resources to provide laboratory disease confirmation are limited, there is a need for user-friendly and low-cost reliable diagnostic tools that do not rely on specialized laboratory facilities. Lateral flow devices (LFD) offer an alternative to conventional diagnostic methods and may strengthen control efforts in low-resource settings. Five different commercially available LFDs were compared in a multi-centered study with respect to their diagnostic sensitivity and their agreement with standard rabies diagnostic techniques. Our evaluation was conducted by several international reference laboratories using a broad panel of samples. The overall sensitivities ranged from 0% up to 62%, depending on the LFD manufacturer, with substantial variation between the different laboratories. Samples with high antigen content and high relative viral load tended to test positive more often in the Anigen/Bionote test, the latter being the one with the best performance. Still, the overall unsatisfactory findings corroborate a previous study and indicate a persistent lack of appropriate test validation and quality control. At present, the tested kits are not suitable for in-field use for rabies diagnosis, especially not for suspect animals where human contact has been identified, as an incorrect negative diagnosis may result in human casualties. This study points out the discrepancy between the enormous need for such a diagnostic tool on the one hand, and on the other hand, a number of already existing tests that are not yet ready for use.
As rabies in carnivores is increasingly controlled throughout much of the Americas, bats are emerging as a significant source of rabies virus infection of humans and domestic animals. Knowledge of the bat species that maintain rabies is a crucial first step in reducing this public health problem. In North America, several bat species are known to be rabies virus reservoirs but the role of bats of the Myotis genus has been unclear due to the scarcity of laboratory confirmed cases and the challenges encountered in species identification of poorly preserved diagnostic submissions by morphological traits alone. This study has employed a collection of rabid bat specimens collected across Canada over a 25 year period to clearly define the role of particular Myotis species as rabies virus reservoirs. The virus was characterised by partial genome sequencing and host genetic barcoding, used to confirm species assignment of specimens, proved crucial to the identification of certain bat species as disease reservoirs. Several variants were associated with Myotis species limited in their Canadian range to the westernmost province of British Columbia while others were harboured by Myotis species that circulate across much of eastern and central Canada. All of these Myotis-associated viral variants, except for one, clustered as a monophyletic MYCAN clade, which has emerged from a lineage more broadly distributed across North America; in contrast one distinct variant, associated with the long-legged bat in Canada, represents a relatively recent host jump from a big brown bat reservoir. Together with evidence from South America, these findings demonstrate that rabies virus has emerged in the Myotis genus independently on multiple occasions and highlights the potential for emergence of new viral-host associations within this genus.
Foxes were vaccinated orally (by bait), gastrically (by stomach tube) and by scarification with a vaccinia recombinant virus expressing the rabies glycoprotein. Neutralizing antibodies against rabies virus were detected at two weeks postvaccination in 8/8 foxes in the bait-fed group, in 3/6 foxes inoculated by stomach tube and in 2/2 of the scarified foxes. After challenge at three months postvaccination with street rabies virus, all foxes that had developed antibodies were protected. The high rate of seroconversion, high levels of antibodies, and resistance to challenge suggest that this recombinant virus might be a suitable vaccine for oral immunization of foxes against rabies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.