At a distance of 1.295 parsecs, 1 the red-dwarf Proxima Centauri (α Centauri C, GL 551, HIP 70890, or simply Proxima) is the Sun's closest stellar neighbour and one of the best studied low-mass stars. It has an effective temperature of only ∼ 3050 K, a luminosity of ∼0.1 per cent solar, a measured radius of 0.14 R ⊙ 2 and a mass of about 12 per cent the mass of the Sun. Although Proxima is considered a moderately active star, its rotation period is ∼ 83 days, 3 and its quiescent activity levels and X-ray luminosity 4 are comparable to the Sun's. New observations reveal the presence of a small planet orbiting Proxima with a minimum mass of 1.3 Earth masses and an orbital period of ∼11.2 days. Its orbital semi-major axis is ∼ 0.05 AU, with an equilibrium temperature in the range where water could be liquid on its surface. 5 The results presented here consist of the analysis of previously obtained Doppler measurements (pre-2016 data), and the confirmation of a signal in a specifically designed follow-up campaign in 2016. The Doppler data comes from two precision radial velocity instruments, both at the European Southern Observatory (ESO): the High Accuracy Radial velocity Planet Searcher (HARPS) and the Ultraviolet and Visual Echelle Spectrograph (UVES). HARPS is a high-resolution stabilized echelle spectrometer installed at the ESO 3.6m telescope (La Silla observatory, Chile), and is calibrated in wavelength using hollow cathode lamps. HARPS has demonstrated radial velocity measurements at ∼1 ms −1 precision over time-scales of years, 6 including on low-mass stars. 7 All HARPS spectra were extracted and calibrated with the standard ESO Data Reduction Software, and radial velocities were measured using a least-squares template matching technique. 7 HARPS data is separated into two datasets. The first set includes all data obtained before 2016 by several programmes (HARPS pre-2016 work, and its value is then used to assess the false-alarm probability (or FAP) of the detection. 14 A FAP below 1% is considered suggestive of periodic variability, and anything below 0.1% is considered to be a significant detection. In the Bayesian framework, signals are first searched using a specialized sampling method 16 that enables exploration of multiple local maxima of the posterior density (the result of this process are the gray lines in Figure 1), and significances are then assessed by obtaining the ratios of evidences of models. If the evidence ratio exceeds some threshold (e.g. B 1 /B 0 > 10 3 ), then the model in the numerator (with one planet) is favoured against the model in the denominator (no planet).A well isolated peak at ∼11.2 days was recovered when analyzing all the night averages in the pre-2016 datasets (Figure 1, panel a). Despite the significance of the signal, the analysis of pre-2016 subsets produced slightly different periods depending on the noise assumptions and which subsets were considered. Confirmation or refutation of this signal at 11.2 days was the main driver for proposing the HARPS PRD campaign. T...
At a distance of 1.8 parsecs 1 , Barnard's star (Gl 699) is a red dwarf with the largest apparent motion of any known stellar object. It is the closest single star to the Sun, second only to the a Centauri triple stellar system. Barnard's star is also among the least magnetically active red dwarfs known 2,3 and has an estimated age older than our Solar System. Its properties have made it a prime target for planet searches employing techniques such as radial velocity 4,5,6 , astrometry 7,8 , and direct imaging 9 , all with different sensitivity limits but ultimately leading to disproved or null results. Here we report that the combination of numerous measurements from high-precision radial velocity instruments reveals the presence of a low-amplitude but significant periodic signal at 233 days. Independent photometric and spectroscopic monitoring, as well as the analysis of instrumental systematic effects, show that this signal is best explained as arising from a planetary companion. The candidate planet around Barnard's star is a cold super-Earth with a minimum mass of 3.2 Earth masses orbiting near its snow-line. The combination of all radial velocity datasets spanning 20 years additionally reveals a long-term modulation that could arise from a magnetic activity cycle or from a more distant planetary object. Because of its proximity to the Sun, the proposed planet has a maximum angular separation of 220 milliarcseconds from Barnard's star, making it an excellent target for complementary direct imaging and astrometric observations.Barnard's star is the second closest red dwarf to the Solar System, after Proxima Centauri, and thus an ideal target to search for exoplanets with potential for further characterisation 10 . Its very low X-ray flux, lack of Ha emission, low chromospheric emission indices, slow rotation rate, slightly sub-solar metallicity, and membership of the thick disc kinematic population indicate an extremely low magnetic activity level and suggest an age older than the Sun. Because of its apparent brightness and very low variability, Barnard's star is often regarded as a benchmark for intermediate M-type dwarfs. Its basic properties are summarized in Table 1.An early analysis of archival radial velocity datasets of Barnard's star up to 2015 indicated the presence of at least one significant signal with a period of ~230 days but with rather poor sampling. To elucidate its presence and nature we undertook an intensive monitoring campaign with the CARMENES spectrometer 11 , collecting precise radial velocity measurements on every possible night during 2016-2017, and we obtained overlapping observations with the ESO/HARPS and HARPS-N instruments. The combined Doppler monitoring effort of Barnard's star, including archival and newly acquired observations, resulted in 771 radial velocity epochs (nightly averages) with typical individual precisions of 0.9 to 1.8 m s -1 , obtained over a timespan exceeding 20 years from seven different facilities and yielding eight independent datasets (ED Table 1).While e...
AD Leonis is a nearby magnetically active M dwarf. We find Doppler variability with a period of 2.23 days as well as photometric signals: (1) a short period signal which is similar to the radial velocity signal albeit with considerable variability; and (2) a long term activity cycle of 4070±120 days. We examine the short-term photometric signal in the available ASAS and MOST photometry and find that the signal is not consistently present and varies considerably as a function of time. This signal undergoes a phase change of roughly 0.8 rad when considering the first and second halves of the MOST data set which are separated in median time by 3.38 days. In contrast, the Doppler signal is stable in the combined HARPS and HIRES radial velocities for over 4700 days and does not appear to vary in time in amplitude, phase, period or as a function of extracted wavelength. We consider a variety of star-spot scenarios and find it challenging to simultaneously explain the rapidly varying photometric signal and the stable radial velocity signal as being caused by starspots co-rotating on the stellar surface. This suggests that the origin of the Doppler periodicity might be the gravitational tug of a planet orbiting the star in spin-orbit resonance. For such a scenario and no spin-orbit misalignment, the measured v sin i indicates an inclination angle of 15.5±2.5 deg and a planetary companion mass of 0.237±0.047 M Jup .
There are by now ten published detections of fast radio bursts (FRBs)-single bright GHz-band millisecond pulses of unknown origin. Proposed explanations cover a broad range from exotic processes at cosmological distances to atmospheric and terrestrial sources. Loeb, Maoz, and Shvartzvald have previously suggested that FRB sources could be nearby flare stars, and pointed out the presence of a W-UMa-type contact binary within the beam of one out of three FRB fields that they examined. To further test the flare-star hypothesis, we use time-domain optical photometry and spectroscopy, and now find possible flare stars in additional FRB fields, with one to three such cases among all eight FRB fields studied. We evaluate the chance probabilities of these possible associations to be in the range ∼ 0.1% to 9%, depending on the input assumptions. Further, we re-analyze the probability that two FRBs recently discovered 3 years apart within the same radio beam are unrelated. Contrary to other claims, we conclude with 99% confidence that the two events are from the same repeating source. The different dispersion measures between the two bursts then rule out a cosmological intergalactic-medium origin for the dispersion measure, but are consistent with the flare-star scenario with a varying plasma blanket between bursts. Finally, we review some theoretical objections that have been raised against a local flare-star FRB origin, and show that they are incorrect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.