The nucletron Leipzig applicator is designed for (HDR) 192Ir brachy radiotherapy of surface lesions. The dosimetric characteristics of this applicator were investigated using simulation method based on Monte Carlo N-particle (MCNP) code and phantom measurements. The simulation method was validated by comparing calculated dose rate distributions of nucletron microSelectron HDR 192Ir source against published data. Radiochromic films and metal-oxide-semiconductor field-effect transistor (MOSFET) detectors were used for phantom measurements. The double exposure technique, correcting the nonuniform film sensitivity, was applied in the film dosimetry. The linear fit of multiple readings with different irradiation times performed for each MOSFET detector measurement was used to obtain the dose rate of each measurement and to correct the source transit-time error. The film and MOSFET measurements have uncertainties of 3%-7% and 3%-5%, respectively. The dose rate distributions of the Leipzig applicator with 30 mm opening calculated by the validated MC method were verified by measurements of film and MOSFET detectors. Calculated two-dimensional planar dose rate distributions show similar patterns as the film measurement. MC calculated dose rate at a reference point defined at depth 5 mm on the applicator's central axis is 7% lower than the film and 3% higher than the MOSFET measurements. The dose rate of a Leipzig applicator with 30 mm opening at reference point is 0.241+/-3% cGy h(-1) U(-1). The MC calculated depth dose rates and profiles were tabulated for clinic use.
Phantom measurements and Monte Carlo calculations have been performed for the purpose of characterizing the dose perturbation caused by radiographic contrast inside the MammoSite breast brachytherapy applicator. Specifically, the dose perturbation is quantified as a heterogeneity correction factor (HCF) for various balloon radii and contrast concentration levels. The dose perturbation is larger for larger balloon radii and higher contrast concentrations. Based on a validated Monte Carlo simulation, the calculated HCF values are 0.99 for a 2 cm radius balloon and 0.98 for a 3 cm radius balloon at 6% contrast concentration levels, and 0.89 and 0.87 for 2 and 3 cm radius balloons, respectively, at 100% contrast concentrations. For a typical implanted balloon radius of 2.4 cm, the HCF values decrease from 0.99 at 6% contrast concentration to 0.90 at 100% contrast concentration. For balloons implanted in patients at our institution, the mean HCF is 0.99, corresponding to a dose reduction of approximately 1%. The contrast effect results in a systematic reduction in the delivered dose, therefore the minimal amount of radiographic contrast necessary should be used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.