We developed abscinazole-E2B (Abz-E2B), a practical and specific inhibitor of abscisic acid (ABA) 8'-hydroxylase (CYP707A), by structural modification of abscinazole-E1 (Abz-E1), another compound we developed. A butoxy group was introduced to Abz-E2B instead of the tosylate group of Abz-E1, in expectation of better water solubility, because the calculated logP value of Abz-E2B is 3.47, which is smaller than that of Abz-E1 (4.02). The water solubility of Abz-E2B was greater than 90% at a concentration of 100 μM, at which the solubility of Abz-E1 was 20%. The enzyme specificity was improved significantly. In in vitro assays constructed using recombinant enzymes, (±)-Abz-E2B was a considerably weaker inhibitor than (±)-Abz-E1 for CYP701A, a GA biosynthetic enzyme, which is a target of S-uniconazole (S-UNI), a lead compound of Abz-E1. (±)-Abz-E2B application to plants resulted in improved desiccation tolerance and an increase in endogenous ABA, with little retardation of growth. We also prepared optically pure Abz-E2B and determined its absolute configuration. The R-enantiomer of Abz-E2B was the more potent inhibitor of CYP707A, unlike UNI, whereas both enantiomers were markedly less effective than S-UNI in inhibiting CYP701A. Because S-Abz-E2B arrested the growth of rice seedlings at 100 μM, probably because of off-target effects, R-Abz-E2B should be used as a chemical tool for research focusing on CYP707A when 100 μM or higher concentration is required, although (±)-Abz-E2B may be useful as an alternative option at a lower concentration.
The effects of fruit load, shading, and 9, 10-ketol-octadecadienoic acid (KODA) application on the expression of MdTFL1 and MdFT1 genes were investigated in apples (Malus domestica Borkh.). The expression of MdTFL1 in apical buds from 21 to 63 days after full bloom (DAFB) in plants subjected to heavy crop treatment (HCT) was higher than that in plants subjected to flower thinning treatment (FTT). In contrast, the expression of MdFT1 did not show a clear difference between HCT and FTT. The shading treatment increased the expression of MdTFL1 at 35, 49, and 80 DAFB. However, MdFT1 did not show a clear difference between shading and non-shading treatments. KODA application decreased the expression of MdTFL1 at 49 DAFB, but it did not have a clear effect on the expression of MdFT1 from 21 to 91 DAFB. KODA application did not influence endogenous gibberellic acid (GA) concentrations in apical buds. These results show that KODA may be related to flower bud formation through its influence on MdTFL1. The relationship between KODA and GA with regard to the flower bud formation of apples was also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.