The satellite and hypersatellite K x-ray emission of a thin Mg foil and thick polycrystalline Si target bombarded by 34-MeV C and 50-MeV Ne ions was measured using high-resolution crystal diffractometry. The corresponding projectile reduced velocities v / v K were 1.09 and 0.92 for C ions and 1.02, 0.86 for Ne ions in case of Mg and Si targets, respectively. An energy resolution of approximately 0.5 eV enabled separation of contributions corresponding to states with different numbers of K-and L-shell vacancies. The relative intensities of satellite and hypersatellite lines were determined by fitting the measured spectra with line shapes calculated using the GRASP92 computer code. To determine the production yields of initial states from the measured x-ray yields, the total decay schemes of initial states were considered. The decay schemes were also used to determine the relative intensities of components contributing to the observed K␣ satellites and hypersatellites and K satellite intensities. Including theoretical predictions in the fitted model is crucial to analyze properly the K␣ hypersatellite region which overlaps the K satellites. The initial-state production yields were then used to determine the L-shell ionization probabilities and the double-to single-K-shell ionization ratio corresponding to the four investigated collisions. The experimental values were compared to the theoretical predictions obtained within the independent electron model using single-electron ionization probabilities calculated by the three-body classical trajectory Monte Carlo (CTMC) method. Since the targets used were thick enough, the equilibrium projectile charge-state distributions in the solid media were assumed. While for the double-to single-K-shell ionization ratios a satisfactory agreement was observed between the CTMC predictions and our experimental results, the L-shell ionization probabilities were found to be overestimated by the CTMC calculations by a factor of about 2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.