It is shown within the conventional photovoltaic charge-transport model that photoexcitable electrons, localized at deep impurity levels, can be effectively removed by light from the exposed area at sufficiently high temperatures. This allows to modify strongly the absorption and photoelectric properties of the material and, in particular, to suppress "optical damage" in LiNbO 3 and LiTaO 3 crystals. This optical cleaning method is applicable to numerous pyro-and piezo-electric optical materials. It employs the photovoltaic drift of electrons and ionic charge compensation at elevated temperatures. The physics of the optical cleaning is very rich; it has strong links to nonlinear dynamics and offers important handles for improvement of the cleaning performance. The use of properly moving light beams leads, e.g., to a strong enhancement of the cleaning rate and allows to reduce the electron concentration by several orders of magnitude. The theoretical predictions are supported by the data of our cleaning experiments with LiNbO 3 crystals. In particular, the intensity threshold of optical damage is increased by three orders of magnitude.
We show, theoretically and experimentally, that the buildup of the space-charge field in photorefractive crystals is far from monoexponential for circular light beams. This is a general property of the two-dimensional (2D) case, in contrast to the one-dimensional case. The results form a basis for determination of the photoelectric parameters of photorefractive crystals within a wide intensity range, which is important, e.g., for solving of the optical-damage problem in LiNbO3 and LiTaO3 crystals.
Articles you may be interested inElectrical conductivity and asymmetric material changes upon irradiation of Mg-doped lithium niobate crystals with low-mass, high-energy ions Refractive index changes by electrically induced domain reversal in a c -cut slab of LiNbO 3
Volume holographic gratings are recorded and retrieved in two commercially available glasses: Schott Foturan and Hoya PEG3. These materials are photoetchable, which describes their major application, but they also allow storage of volume holograms without any chemical etching. The samples are illuminated with ultraviolet light at a wavelength of 325 nm and thermally processed to achieve a maximum diffraction efficiency of Ϸ9% for a 1-mm-thick sample. The two glasses show similar behavior; the diffraction efficiencies in Foturan tend to be slightly larger, whereas PEG3 tends to have weaker light scattering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.