Formation of the shrinkage defects in ductile iron castings is far more complicated phenomenon than in other casting alloys. In the paper one of the aspects of formation of porosity in this alloy was considered - changes in cast iron's density during crystallization caused by varying temperature, phase fractions and phase's composition. Computer model, using cellular automata method, for determination of changes in density of ductile iron during crystallization was applied. Simulation of solidification was conducted for 5 Fe-C binarie alloys with ES from 0.9 to 1.1 for the estimation of the eutectic saturation influence on the ductile iron shrinkage and expansion. As a result of calculations it was stated that after undercooling ductile iron below liquidus temperature volumetric changes proceed in three stages: preeutectic shrinkage (minimal in eutectic cast iron), eutectic expansion (maximum value equals to about 1.5% for ES = 1.05) and last shrinkage (about 0.4% in all alloys regardless of ES).
The study presents a mathematical model of the crystallisation of nodular graphite cast iron. The proposed model is based on micro-and macromodels, in which heat flow is analysed at the macro level, while micro level is used for modelling of the diffusion of elements. The use of elementary diffusion field in the shape of an averaged Voronoi polyhedron [AVP] was proposed. To determine the geometry of the averaged Voronoi polyhedron, Kolmogorov statistical theory of crystallisation was applied. The principles of a differential mathematical formulation of this problem were discussed. Application of AVP geometry allows taking into account the reduced volume fraction of the peripheral areas of equiaxial grains by random contacts between adjacent grains. As a result of the simulation, the cooling curves were plotted, and the movement of "graphite-austenite" and "austenite-liquid" phase boundaries was examined. Data on the microsegregation of carbon in the cross-section of an austenite layer in eutectic grains were obtained. Calculations were performed for different particle densities and different wall thicknesses. The calculation results were compared with experimental data.
Tests were carried out on samples of low-alloy ductile iron with additions of Ni, Cu and Mo, subjected to austempering heat treatment. The samples were austenitized at 850, 900 and 950 °C, and then austempered at T = 210, 240, 270, 300 and 330 °C. The ausferritizing treatment was carried out in a salt bath for the time τ = 2 - 8 hours. Additionally, tests and studies covered samples subjected to the ausferritizing treatment at 270 °C with the time of holding castings in a bath from 2 to 24 hours. Evaluation covered the results of the ADI microstructure examinations and hardness measurements. The ADI matrix morphology was identified counting the average number of ausferrite plates and measuring their width and spacing. The regression equations HB = f (τ, T) and τ = f (HB, T) were derived to establish the, so-called, “process window”, allowing obtaining a priori the required microstructure of ADI and, consequently, the required mechanical properties, mainly hardness, shaping the functional properties of castings, abrasion wear resistance – in particular.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.