The results of studies on the use of magnesium alloy in modern Tundish + Cored Wire injection method for production of vermicular graphite cast irons were described. The injection of Mg Cored Wire length is a treatment method which can be used to process iron melted in an electric induction furnace. This paper describes the results of using a high-magnesium ferrosilicon alloy in cored wire for the production of vermicular graphite cast irons at the; Tundish + Cored Wire to be injected methods (PE) for pearlitic-ferritic matrix GJV with about 25 %ferrite content. The results of calculations and experiments have indicated the length of the Cored Wire to be injected basing on the initial sulfur content and weight of the treated melt. The paper presents a microstructure matrix and vermicular graphite in standard sample and different walled castings. The results of numerous trials have shown that the magnesium Tundish + PE Method process can produce high quality vermicular graphite irons under the specific industrial conditions of the above mentioned foundries.
The paper presents results of the possibility of adapting the Althoff-Radtke test for High Chromium Cast Iron. The Althoff-Radtke test is a clump attempt used for steel. The Althoff-Radtke test has four different lengths of clamp which qualifies it as a test to quantitatively take into account different kinds of shrinkage ΔL. The length of the slot of the cracked corner and the length of each staple (50 -350 mm) are the parameters tendency to cast cracks. Castings of white cast iron have a high tendency to hot cracking due to the large range of solidification temperatures, unfavorable kinetics parameters of shrinkage, and especially a lack of expansion before shrinkage. Shrinkage of high chromium white cast iron is similar to the shrinkage of cast steel, and is approximately 2%. Therefore it is important to test susceptibility to hot cracks. Research was carried out under industrial conditions. Four melts were performed, one of the initial chemical composition and the other three modified by different amounts of Fe-Ti, respectively, 0.25%, 0.5% and 0.75% Fe-Ti. The propensity for hot cracking was based on the observation of the dark surface in the corner of the sample. The study shows that the Althoff-Radtke test can be adapted to determine the tendency for hot cracking of high chromium cast iron. It should however be noted that the test results cannot be compared with those for other alloys.
Studies were carried out to determine the effect of heat treatment parameters on the plastic properties of unalloyed ausferritic ductile iron, such as the elongation and toughness at ambient temperature and at -60 °C. The effect of austenitizing temperature (850, 900 and 950°C) and ausferritizing time (5 -180 min.) at a temperature of 360°C was also discussed. The next step covered investigations of a relationship that is believed to exist between the temperature (270, 300, 330, 360 and 390 °C) and time (5, 10, 30, 60, 90, 120, 150, 180, 240 min.) of the austempering treatment and the mechanical properties of unalloyed ausferritic ductile iron, when the austenitizing temperature is 950°C. The "process window" was calculated for the ADI characterized by high toughness corresponding to the EN-GJS-800-10-RT and EN-GJS-900-8 grades according to EN-PN 1564 and to other high-strength grades included in this standard. Low-alloyed cast iron with the nodular graphite is an excellent starting material for the technological design of all the ausferritic ductile iron grades included in the PN-EN-1624 standard. The examined cast iron is characterized by high mechanical properties stable within the entire range of heat treatment parameters.
The results of studies on the use of magnesium alloy in modern Tundish for production of vermicular graphite cast irons were described. This paper describes the results of using a low-magnesium ferrosilicon alloy for the production of vermicular graphite cast irons. The paper presents a vermicular (and nodular) graphite in different walled castings. The results of trials have shown that the magnesium Tundish process can produce high quality vermicular graphite irons under the specific industrial conditions of FoundriesOdlewnie Polskie S.A. in Starachowice. In this work describes too preliminary studies on the oxygen state in cast iron and their effect on graphite crystallization.
Tests were carried out on samples of low-alloy ductile iron with additions of Ni, Cu and Mo, subjected to austempering heat treatment. The samples were austenitized at 850, 900 and 950 °C, and then austempered at T = 210, 240, 270, 300 and 330 °C. The ausferritizing treatment was carried out in a salt bath for the time τ = 2 - 8 hours. Additionally, tests and studies covered samples subjected to the ausferritizing treatment at 270 °C with the time of holding castings in a bath from 2 to 24 hours. Evaluation covered the results of the ADI microstructure examinations and hardness measurements. The ADI matrix morphology was identified counting the average number of ausferrite plates and measuring their width and spacing. The regression equations HB = f (τ, T) and τ = f (HB, T) were derived to establish the, so-called, “process window”, allowing obtaining a priori the required microstructure of ADI and, consequently, the required mechanical properties, mainly hardness, shaping the functional properties of castings, abrasion wear resistance – in particular.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.