An inspection of the DSS and 2MASS images of selected Milky Way regions has led to the discovery of 66 stellar groupings whose morphologies, color-magnitude diagrams, and stellar density distributions suggest that these objects are possible open clusters that do not yet appear to be listed in any catalogue. For 24 of these groupings, which we consider to be the most likely to be candidates, we provide extensive descriptions on the basis of 2MASS photometry and their visual impression on DSS and 2MASS. Of these cluster candidates, 9 have fundamental parameters determined by fitting the color-magnitude diagrams with solar metallicity Padova isochrones. An additional 10 cluster candidates have distance moduli and reddenings derived from K magnitudes and (J − K) color indices of helium-burning red clump stars. As an addendum, we also provide a list of a number of apparently unknown galactic and extragalactic objects that were also discovered during the survey.
Six planetary nebulae (PN) are known in the Kepler space telescope field of view, three newly identified. Of the 5 central stars of PN with useful Kepler data, one, J 193110888+4324577, is a short-period, post common envelope binary exhibiting relativistic beaming effects. A second, the central star of the newly identified PN Pa 5, has a rare O(He) spectral type and a periodic variability consistent with an evolved companion, where the orbital axis is almost aligned with the line of sight. The third PN, NGC 6826 has a fast rotating central star, something that can only be achieved in a merger. Fourth, the central star of the newly identified PN Kn 61, has a PG1159 spectral type and a mysterious semi-periodic light variability which we conjecture to be related to the interplay of binarity with a stellar wind. Finally, the central star of the circular PN A 61 does not appear to have a photometric variability above 2 mmag. With the possible exception of the variability of Kn 61, all other variability behaviour, whether due to binarity or not, would not easily have been detected from the ground. We conclude, based on very low numbers, that there may be many more close binary or close binary products to be discovered with ultra-high precision photometry. With a larger number of high precision photometric observations we will be able to determine how much higher than the currently known 15 per cent, the short period binary fraction for central stars of PN is likely to be.
Abstract:Recent Hα surveys such as SHS and IPHAS have improved the completeness of the Galactic planetary nebula (PN) census. We now know of ∼3000 PNe in the Galaxy, but this is far short of most estimates, typically ∼25 000 or more for the total population. The size of the Galactic PN population is required to derive an accurate estimate of the chemical enrichment rates of nitrogen, carbon, and helium. In addition, a high PN count (>20 000) is strong evidence that most main-sequence stars of mass 1-8 M will go through a PN phase, while a low count (<10 000) argues that special conditions (e.g. close binary interactions) are required to form a PN. We describe a technique for finding hundreds more PNe using the existing data collections of the digital sky surveys, thereby improving the census of Galactic PNe.
Context. The Galactic globular cluster system is incompletely known, especially in the low-latitude regions of the Galactic bulge and disk. We report the physical characterisation of 12 star clusters in the Milky Way, most of which are explored here for the first time. Aims. Our primary aim is determining their main physical parameters, such as reddening, extinction, metallicity, age, total luminosity, mean cluster proper motions (PMs), and distances, in order to reveal the physical nature of these clusters. Methods. We study the clusters using optical and near-infrared (NIR) datasets. In particular, we use the Gaia Early Data Release 3 (EDR3) PMs in order to perform a PM decontamination procedure and build final catalogues with probable members. We match the Gaia EDR3 with the VISTA Variables in the Vía Láctea extended (VVVX) survey and the Two Micron All-Sky survey (2MASS) in the NIR, in order to construct complete NIR and optical colour-magnitude diagrams (CMDs) and investigate the clusters properties. Results. The extinctions are evaluated using existing reddening maps. We find ranges spanning 0.09 ≲ AKs ≲ 0.86 mag and 0.89 ≲ AG ≲ 4.72 mag in the NIR and optical, respectively. Adopting standard intrinsic red clump (RC) magnitudes and extinction values, we first obtain the distance modulus for each cluster and thereafter their heliocentric distances, which range from about 4 to 20 kpc. Therefore, we are able to place these clusters at 3 ≲ RG ≲ 14 kpc from the Galactic centre. The best PARSEC isochrone fit yields a metallicity range of −1.8 < [Fe/H] < +0.3 and an approximate age range of 2 < age < 14 Gyr. Finally, we find that all clusters have low luminosities, with −6.9 < MV < −3.5 mag. Conclusions. Based on our photometric analysis, we find both open clusters (OCs) and globular clusters (GCs) in our sample. In particular, we confirm the OC nature for Kronberger 100, while we classify Patchick 125 as a metal-poor GC, Ferrero 54 as a metal-rich GC, and ESO 92-18 as a possible old OC or young GC. The classification as GC candidates is also suggested for Kronberger 99, Patchick 122, Patchick 126, Riddle 15, FSR 190, and Gaia 2. We also conclude that Kronberger 119 and Kronberger 143 might be either old OCs or young GCs.
Abstract-The high refractive index of current scintillating materials puts severe restrictions on their effective light yield. In this paper, we describe an approach that uses a photonic crystal pattern machined into the coupling face of the scintillator to partly overcome the problem of total internal reflection. Simulations are performed for 2 mm 2 mm 8 mm LuAP and LSO pixels with and without photonic crystal and different types of wrapping. It is shown that by tuning the structure of the photonic crystal and the size of its elements, the extraction efficiency of the surface can be significantly improved compared to a plain exit surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.