An improved energy confinement regime, I-mode is studied in Alcator C-Mod, a compact high-field divertor tokamak using Ion Cyclotron Range of Frequencies (ICRF) auxiliary heating. I-mode features an edge energy transport barrier without an accompanying particle barrier, leading to several performance benefits. H-mode energy confinement is obtained without core impurity accumulation, resulting in reduced impurity radiation with a high-Z metal wall and ICRF heating. I-mode has a stationary temperature pedestal with Edge Localized Modes (ELMs) typically absent, while plasma density is controlled using divertor cryopumping. I-mode is a confinement regime that appears distinct from both L-mode and H-mode, combining the most favorable elements of both. The I-mode regime is obtained predominately with ion ∇B drift away from the active X-point. The transition from L-mode to I-mode is primarily identified by the formation of a high temperature edge pedestal, while the edge density profile remains nearly identical to Lmode. Laser blowoff injection shows that I-mode core impurity confinement times are nearly identical with those in L-mode, despite the enhanced energy confinement. In addition a weakly coherent edge MHD mode is apparent at high frequency ~ 100-300 kHz which appears to increase particle transport in the edge. The I-mode regime has been obtained over a wide parameter space (B=3-6 T, I p =0.7-1.3 MA, q 95 =2.5-5). In general the I-mode exhibits the strongest edge T pedestal and normalized energy confinement (H 98 >1) at low q 95 (<3.5) and high heating power (P heat > 4 MW). I-mode significantly expands the operational space of ELM-free, stationary pedestals in C-Mod to T ped~1 keV and low collisionality ν* ped~0 .1, as compared to EDA H-mode with T ped < 0.6 keV, ν* ped >1. The I-mode global energy confinement has a relatively weak degradation with heating power; W th ~ I p P heat 0.7 leading to increasing H 98 with heating power.2
The behaviour of tungsten in the core of hybrid scenario plasmas in JET with the ITER-like wall is analysed and modelled with a combination of neoclassical and gyrokinetic codes. In these discharges, good confinement conditions can be maintained only for the first 2–3 s of the high power phase. Later W accumulation is regularly observed, often accompanied by the onset of magneto-hydrodynamical activity, in particular neoclassical tearing modes (NTMs), both of which have detrimental effects on the global energy confinement. The dynamics of the accumulation process is examined, taking into consideration the concurrent evolution of the background plasma profiles, and the possible onset of NTMs. Two time slices of a representative discharge, before and during the accumulation process, are analysed with two independent methods, in order to reconstruct the W density distribution over the poloidal cross-section. The same time slices are modelled, computing both neoclassical and turbulent transport components and consistently including the impact of centrifugal effects, which can be significant in these plasmas, and strongly enhance W neoclassical transport. The modelling closely reproduces the observations and identifies inward neoclassical convection due to the density peaking of the bulk plasma in the central region as the main cause of the accumulation. The change in W neoclassical convection is directly produced by the transient behaviour of the main plasma density profile, which is hollow in the central region in the initial part of the high power phase of the discharge, but which develops a significant density peaking very close to the magnetic axis in the later phase. The analysis of a large set of discharges provides clear indications that this effect is generic in this scenario. The unfavourable impact of the onset of NTMs on the W behaviour, observed in several discharges, is suggested to be a consequence of a detrimental combination of the effects of neoclassical transport and of the appearance of an island.
Recent developments in theory-based modelling of core heavy impurity transport are presented, and shown to be necessary for quantitative description of present experiments in JET and ASDEX Upgrade. The treatment of heavy impurities is complicated by their large mass and charge, which result in a strong response to plasma rotation or any small background electrostatic field in the plasma, such as that generated by anisotropic external heating. These forces lead to strong poloidal asymmetries of impurity density, which have recently been added to numerical tools describing both neoclassical and turbulent transport. Modelling predictions of the steady-state two-dimensional tungsten impurity distribution are compared with experimental densities interpreted from soft Xray diagnostics. The modelling identifies neoclassical transport enhanced by poloidal asymmetries as the dominant mechanism responsible for tungsten accumulation in the central core of the plasma. Depending on the bulk plasma profiles, neoclassical temperature screening can prevent accumulation, and can be enhanced by externally heated species, demonstrated here in ICRH plasmas.
The SPARC tokamak is a critical next step towards commercial fusion energy. SPARC is designed as a high-field ( $B_0 = 12.2$ T), compact ( $R_0 = 1.85$ m, $a = 0.57$ m), superconducting, D-T tokamak with the goal of producing fusion gain $Q>2$ from a magnetically confined fusion plasma for the first time. Currently under design, SPARC will continue the high-field path of the Alcator series of tokamaks, utilizing new magnets based on rare earth barium copper oxide high-temperature superconductors to achieve high performance in a compact device. The goal of $Q>2$ is achievable with conservative physics assumptions ( $H_{98,y2} = 0.7$ ) and, with the nominal assumption of $H_{98,y2} = 1$ , SPARC is projected to attain $Q \approx 11$ and $P_{\textrm {fusion}} \approx 140$ MW. SPARC will therefore constitute a unique platform for burning plasma physics research with high density ( $\langle n_{e} \rangle \approx 3 \times 10^{20}\ \textrm {m}^{-3}$ ), high temperature ( $\langle T_e \rangle \approx 7$ keV) and high power density ( $P_{\textrm {fusion}}/V_{\textrm {plasma}} \approx 7\ \textrm {MW}\,\textrm {m}^{-3}$ ) relevant to fusion power plants. SPARC's place in the path to commercial fusion energy, its parameters and the current status of SPARC design work are presented. This work also describes the basis for global performance projections and summarizes some of the physics analysis that is presented in greater detail in the companion articles of this collection.
High-resolution charge-exchange recombination spectroscopic measurements of B5+ ions have enabled the first spatially resolved calculations of the radial electric field (Er) in the Alcator C-Mod pedestal region [E. S. Marmar, Fusion Sci. Technol. 51, 261 (2006)]. These observations offer new challenges for theory and simulation and provide for important comparisons with other devices. Qualitatively, the field structure observed on C-Mod is similar to that on other tokamaks. However, the narrow high-confinement mode (H-mode) Er well widths (5 mm) observed on C-Mod suggest a scaling with machine size, while the observed depths (up to 300 kV/m) are unprecedented. Due to the strong ion-electron thermal coupling in the C-Mod pedestal, it is possible to infer information about the main ion population in this region. The results indicate that in H-mode the main ion pressure gradient is the dominant contributor to the Er well and that the main ions have significant edge flow. C-Mod H-mode data show a clear correlation between deeper Er wells, higher confinement plasmas, and higher electron temperature pedestal heights. However, improved L-mode (I-mode) plasmas exhibit energy confinement equivalent to that observed in similar H-mode discharges, but with significantly shallower Er wells. I-mode plasmas are characterized by H-mode-like energy barriers, but with L-mode-like particle barriers. The decoupling of energy and particle barrier formation makes the I-mode an interesting regime for fusion research and provides for a low collisionality pedestal without edge localized modes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.