Parker Solar Probe (PSP) data recorded within a heliocentric radial distance of 0.3 au have revealed a magnetic field dominated by Alfvénic structures that undergo large local variations or even reversals of the radial magnetic field. They are called magnetic switchbacks, they are consistent with folds in magnetic field lines within a same magnetic sector and are associated with velocity spikes during an otherwise calmer background. They are thought to originate either in the low solar atmosphere through magnetic reconnection processes or result from the evolution of turbulence or velocity shears in the expanding solar wind. In this work, we investigate the temporal and spatial characteristic scales of magnetic switchback patches. We define switchbacks as a deviation from the nominal Parker spiral direction and detect them automatically for PSP encounters 1, 2, 4, and 5. We focus in particular on a 5.1 day interval dominated by switchbacks during E5. We perform a wavelet transform of the solid angle between the magnetic field and the Parker spiral and find periodic spatial modulations with two distinct wavelengths, respectively consistent with solar granulation and supergranulation scales. In addition we find that switchback occurrence and spectral properties seem to depend on the source region of the solar wind rather than on the radial distance of PSP. These results suggest that switchbacks are formed in the low corona and modulated by the solar surface convection pattern.
We perform a statistical assessment of solar wind stability at 1 AU against ion sources of free energy using Nyquist's instability criterion. In contrast to typically employed threshold models which consider a single free-energy source, this method includes the effects of proton and He^{2+} temperature anisotropy with respect to the background magnetic field as well as relative drifts between the proton core, proton beam, and He^{2+} components on stability. Of 309 randomly selected spectra from the Wind spacecraft, 53.7% are unstable when the ion components are modeled as drifting bi-Maxwellians; only 4.5% of the spectra are unstable to long-wavelength instabilities. A majority of the instabilities occur for spectra where a proton beam is resolved. Nearly all observed instabilities have growth rates γ slower than instrumental and ion-kinetic-scale timescales. Unstable spectra are associated with relatively large He^{2+} drift speeds and/or a departure of the core proton temperature from isotropy; other parametric dependencies of unstable spectra are also identified.
Context. Parker Solar Probe (PSP) measures the magnetic field and plasma parameters of the solar wind at unprecedentedly close distances to the Sun. These data provide great opportunities to study the early-stage evolution of magnetohydrodynamic (MHD) turbulence in the solar wind. Aims. In this study, we make use of the PSP data to explore the nature of solar wind turbulence focusing on the Alfvénic character and power spectra of the fluctuations and their dependence on the distance and context (i.e., large-scale solar wind properties), aiming to understand the role that different effects such as source properties, solar wind expansion, and stream interaction might play in determining the turbulent state. Methods. We carried out a statistical survey of the data from the first five orbits of PSP with a focus on how the fluctuation properties at the large MHD scales vary with different solar wind streams and the distance from the Sun. A more in-depth analysis from several selected periods is also presented. Results. Our results show that as fluctuations are transported outward by the solar wind, the magnetic field spectrum steepens while the shape of the velocity spectrum remains unchanged. The steepening process is controlled by the “age” of the turbulence, which is determined by the wind speed together with the radial distance. Statistically, faster solar wind has higher “Alfvénicity,” with a more dominant outward propagating wave component and more balanced magnetic and kinetic energies. The outward wave dominance gradually weakens with radial distance, while the excess of magnetic energy is found to be stronger as we move closer toward the Sun. We show that the turbulence properties can significantly vary from stream to stream even if these streams are of a similar speed, indicating very different origins of these streams. Especially, the slow wind that originates near the polar coronal holes has much lower Alfvénicity compared with the slow wind that originates from the active regions and pseudostreamers. We show that structures such as heliospheric current sheets and velocity shears can play an important role in modifying the properties of the turbulence.
Aims. We survey the electron heat flux observed by the Parker Solar Probe (PSP) in the near-Sun environment at heliocentric distances of 0.125–0.25 AU. Methods. We utilized measurements from the Solar Wind Electrons Alphas and Protons and FIELDS experiments to compute the solar wind electron heat flux and its components and to place these in context. Results. The PSP observations reveal a number of trends in the electron heat flux signatures near the Sun. The magnitude of the heat flux is anticorrelated with solar wind speed, likely as a result of the lower saturation heat flux in the higher-speed wind. When divided by the saturation heat flux, the resulting normalized net heat flux is anticorrelated with plasma beta on all PSP orbits, which is consistent with the operation of collisionless heat flux regulation mechanisms. The net heat flux also decreases in very high beta regions in the vicinity of the heliospheric current sheet, but in most cases of this type the omnidirectional suprathermal electron flux remains at a comparable level or even increases, seemingly inconsistent with disconnection from the Sun. The measured heat flux values appear inconsistent with regulation primarily by collisional mechanisms near the Sun. Instead, the observed heat flux dependence on plasma beta and the distribution of suprathermal electron parameters are both consistent with theoretical instability thresholds associated with oblique whistler and magnetosonic modes.
Context. Parker Solar Probe’s first solar encounter has revealed the presence of sudden magnetic field deflections in the slow Alfvénic solar wind. These structures, which are often called switchbacks, are associated with proton velocity enhancements. Aims. We study their statistical properties with a special focus on their boundaries. Methods. Using data from SWEAP and FIELDS, we investigate particle and wavefield properties. The magnetic boundaries are analyzed with the minimum variance technique. Results. Switchbacks are found to be Alfvénic in 73% of cases and compressible in 27%. The correlations between magnetic field magnitude and density fluctuations reveal the existence of both positive and negative correlations, and the absence of perturbations in the magnetic field magnitude. Switchbacks do not lead to a magnetic shear in the ambient field. Their boundaries can be interpreted in terms of rotational or tangential discontinuities. The former are more frequent. Conclusions. Our findings provide constraints on the possible generation mechanisms of switchbacks, which have to be able to also account for structures that are not purely Alfvénic. One of the possible candidates, among others, manifesting the described characteristics is the firehose instability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.