The ability of a cow to cope with environmental disturbances, such as pathogens or heat waves, is called resilience. To improve resilience through breeding, we need resilience indicators, which could be based on the fluctuation patterns in milk yield resulting from disturbances. The aim of this study was to explore 3 traits that describe fluctuations in milk yield as indicators for breeding resilient cows: the variance, autocorrelation, and skewness of the deviations from individual lactation curves. We used daily milk yield records of 198,754 first-parity cows, recorded by automatic milking systems. First, we estimated a lactation curve for each cow using 4 different methods: moving average, moving median, quantile regression, and Wilmink curve. We then calculated the log-transformed variance (LnVar), lag-1 autocorrelation (r auto ), and skewness (Skew) of the daily deviations from these curves as resilience indicators. A genetic analysis of the resilience indicators was performed, and genetic correlations between resilience indicators and health, longevity, fertility, metabolic, and production traits were estimated. The heritabilities differed between LnVar (0.20 to 0.24), r auto (0.08 to 0.10), and Skew (0.01 to 0.02), and the genetic correlations among the indicators were weak to moderate. For r auto and Skew, genetic correlations with health, longevity, fertility, and metabolic traits were weak or the opposite of what we expected. Therefore, r auto and Skew have limited value as resilience indicators. However, lower LnVar was genetically associated with better udder health (genetic correlations from −0.22 to −0.32), better longevity (−0.28 to −0.34), less ketosis (−0.27 to −0.33), better fertility (−0.06 to −0.17), higher BCS (−0.29 to −0.40), and greater dry matter intake (−0.53 to −0.66) at the same level of milk yield. These correlations support LnVar as an indicator of resilience. Of all 4 curve-fitting methods, LnVar based on quantile regression systematically had the strongest genetic correlations with health, longevity, and fertility traits. Thus, quantile regression is considered the best curve-fitting method. In conclusion, LnVar based on deviations from a quantile regression curve is a promising resilience indicator that can be used to breed cows that are better at coping with disturbances.
Longevity, productive life, or lifespan of dairy cattle is an important trait for dairy farmers, and it is defined as the time from first calving to the last test date for milk production. Methods for genetic evaluations need to account for censored data; that is, records from cows that are still alive. The aim of this study was to investigate whether these methods also need to take account of survival being genetically a different trait across the entire lifespan of a cow. The data set comprised 112,000 cows with a total of 3,964,449 observations for survival per month from first calving until 72 mo in productive life. A random regression model with second-order Legendre polynomials was fitted for the additive genetic effect. Alternative parameterizations were (1) different trait definitions for the length of time interval for survival after first calving (1, 3, 6, and 12 mo); (2) linear or threshold model; and (3) differing the order of the Legendre polynomial. The partial derivatives of a profit function were used to transform variance components on the survival scale to those for lifespan. Survival rates were higher in early life than later in life (99 vs. 95%). When survival was defined over 12-mo intervals survival curves were smooth compared with curves when 1-, 3-, or 6-mo intervals were used. Heritabilities in each interval were very low and ranged from 0.002 to 0.031, but the heritability for lifespan over the entire period of 72 mo after first calving ranged from 0.115 to 0.149. Genetic correlations between time intervals ranged from 0.25 to 1.00. Genetic parameters and breeding values for the genetic effect were more sensitive to the trait definition than to whether a linear or threshold model was used or to the order of Legendre polynomial used. Cumulative survival up to the first 6 mo predicted lifespan with an accuracy of only 0.79 to 0.85; that is, reliability of breeding value with many daughters in the first 6 mo can be, at most, 0.62 to 0.72, and changes of breeding values are still expected when daughters are getting older. Therefore, an improved model for genetic evaluation should treat survival as different traits during the lifespan by splitting lifespan in time intervals of 6 mo or less to avoid overestimated reliabilities and changes in breeding values when daughters are getting older.
To include feed-intake-related traits in the breeding goal, accurate estimates of genetic parameters of feed intake, and its correlations with other related traits (i.e., production, conformation) are required to compare different options. However, the correlations between feed intake and conformation traits can vary depending on the population. Therefore, the objective was to estimate genetic correlations between 6 feed-intake-related traits and 7 conformation traits within dairy cattle from 2 countries, the Netherlands (NL) and the United States (US). The feed-intake-related traits were dry matter intake (DMI), residual feed intake (RFI), milk energy output (MilkE), milk yield (MY), body weight (BW), and metabolic body weight (MBW). The conformation traits were stature (ST), chest width (CW), body depth (BD), angularity (ANG), rump angle (RA), rump width (RW), and body condition score (BCS). Feed intake data were available for 1,665 cows in NL and for 1,920 cows in US, from 83 nutritional experiments (48 in NL and 35 in US) conducted between 1991 and 2011 in NL and between 2007 and 2013 in US. Additional conformation records from relatives of the animals with DMI records were added to the database, giving a total of 37,241 cows in NL and 28,809 in US with conformation trait information. Genetic parameters were estimated using bivariate animal model analyses. The model included the following fixed effects for feed-intake-related traits: location by experiment-ration, age of cow at calving modeled with a second order polynomial by parity class, location by year-season, and days in milk, and these fixed effects for the conformation traits: herd by classification date, age of cow at classification, and lactation stage at classification. Both models included additive genetic and residual random effects. The highest estimated genetic correlations involving DMI were with CW in both countries (NL=0.45 and US=0.61), followed by ST (NL=0.33 and US=0.57), BD (NL=0.26 and US=0.49), and BCS (NL=0.24 and US=0.46). The MilkE and MY were moderately correlated with ANG in both countries (0.33 and 0.47 in NL, and 0.36 and 0.48 in US). Finally, BW was highly correlated with CW (0.77 in NL and 0.84 in US) and with BCS (0.83 in NL and 0.85 in US). Feed-intake-related traits were moderately to highly genetically correlated with conformation traits (ST, CW, BD, and BCS) in both countries, making them potentially useful as predictors of DMI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.