This study assessed if the use of sterol demethylase inhibitor fungicides in vineyard production can induce resistance to azoles in Aspergillus strains and if it can induce selection of resistant species. We also tried to identify the Aspergillus species most prevalent in the vineyards. Two vineyards from northern Portugal were selected from "Vinhos Verdes" and "Douro" regions. The vineyards were divided into plots that were treated or not with penconazole (PEN). In each vineyard, air, soil, and plant samples were collected at three different times. The strains of Aspergillus spp. were isolated and identified by morphological and molecular techniques. We identified 46 Aspergillus section Nigri, eight Aspergillus fumigatus, seven Aspergillus lentulus, four Aspergillus wentii, two Aspergillus flavus, two Aspergillus terreus, one Aspergillus calidoustus, one Aspergillus westerdijkiae, one Aspergillus tamarii, and one Eurotium amstelodami. Aspergillus strains were evaluated for their susceptibility to medical azoles used in human therapy (itraconazole, posaconazole, and voriconazole) and to agricultural azoles (PEN) used in the prevention and treatment of plant diseases. The isolates showed moderate susceptibility to voriconazole. We did not observe any decrease of susceptibility to the medical azoles tested throughout the testing period in any of the treated plots, although some of the resistant species were isolated from there.
Although reference broth microdilution protocol is currently available for filamentous fungi antifungal susceptibility testing (AFST), simpler alternatives as Etest(®) tend to be favoured in clinical routine, making their validation of utmost importance. In this study, Etest(®) method using 2% glucose supplemented Muller-Hinton agar was compared to the Clinical and Laboratory Standards Institute (CLSI) M38-A2 protocol for filamentous fungi AFST. The echinocandins, caspofungin and anidulafungin, the azoles voriconazole and posaconazole, and the polyene amphotericin B were tested against 48 Aspergillus spp., seven Fusarium spp., one Beauveria bassiana and three Paecilomyces lilacinus isolates. The majority of the isolates were susceptible to the antifungals tested, and the overall level of agreement between the CLSI and Etest methods was 71.9% for one dilution and 99.7% when using two dilutions. Since interpretative breakpoints for filamentous fungi employing the CLSI or Etest methods are not available yet, the established epidemiological cut-off values for Aspergillus spp. were used to distinguish wild-type isolates from those with acquired resistance mechanisms. Forty-five Aspergillus strains did not evidence resistance mutations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.