Large earthquakes produce crustal deformation that can be quantified by geodetic measurements, allowing for the determination of the slip distribution on the fault. We used data from Global Positioning System (GPS) networks in Central Chile to infer the static deformation and the kinematics of the 2010 moment magnitude (M(w)) 8.8 Maule megathrust earthquake. From elastic modeling, we found a total rupture length of ~500 kilometers where slip (up to 15 meters) concentrated on two main asperities situated on both sides of the epicenter. We found that rupture reached shallow depths, probably extending up to the trench. Resolvable afterslip occurred in regions of low coseismic slip. The low-frequency hypocenter is relocated 40 kilometers southwest of initial estimates. Rupture propagated bilaterally at about 3.1 kilometers per second, with possible but not fully resolved velocity variations.
[1] We show that the low-pass filtered, peak amplitudes of initial P-and S-wave seismic signals recorded in the vicinity of an occurring earthquake source correlates with the earthquake magnitude and may be used for real-time estimation of the event size in seismic early warning applications. The earthquake size can be therefore estimated using only a couple of seconds of signal from the P-or S-wave onsets, i.e. while the rupture itself is still propagating and rupture dimension is far from complete. We argue that dynamic stress release and/or slip duration on the fault in the very early stage of seismic fracture, scales both with the observed peak amplitude and with the elastic energy available for fracture propagation. The probability that a fracture grows to a larger size should scale with the energy initially available. Citation: Zollo, A., M. Lancieri, and S. Nielsen (2006), Earthquake magnitude estimation from peak amplitudes of very early seismic signals on strong motion records, Geophys. Res. Lett., 33, L23312,
S U M M A R YMost earthquake early warning systems (EEWS) developed so far are conceived as either 'regional' (network-based) or 'on-site' (stand-alone) systems. The recent implementation of nationwide, high dynamic range, dense accelerometer arrays makes now available, potentially in real time, unsaturated waveforms of moderate-to-large magnitude earthquakes recorded at very short epicentral distances (<10-20 km). This would allow for a drastic increase of the early warning lead-time, for example, the time between the alert notification and the arrival time of potentially destructive waves at a given target site. By analysing strong motion data from modern accelerograph networks in Japan, Taiwan and Italy, we propose an integrated regional/on-site early warning method, which can be used in the very first seconds after a moderate-to-large earthquake to map the most probable damaged zones. The method is based on the real-time measurement of the period (τ c ) and peak displacement (Pd) parameters at stations located at increasing distances from the earthquake epicentre. The recorded values of early warning parameters are compared to threshold values, which are set for a minimum magnitude 6 and instrumental intensity VII, according to the empirical regression analyses of strong motion data. At each recording site the alert level is assigned based on a decisional table with four alert levels defined upon critical values of the parameters Pd and τ c , which are set according to the error bounds estimated on the derived prediction equations. Given a real time, evolutionary estimation of earthquake location from first P arrivals, the method furnishes an estimation of the extent of potential damage zone as inferred from continuously updated averages of the period parameter and from mapping of the alert levels determined at the near-source accelerometer stations. The off-line application of the method to strong motion records of the Mw 6.3, 2009 Central Italy earthquake shows a very consistent match between the rapidly predicted (within a few seconds from the first recorded P wave) and observed damage zone, the latter being mapped from detailed macroseismic surveys a few days after the event. The proposed approach is suitable for Italy, where, during the last two decades, a dense network of wide dynamic-range accelerometer arrays has been deployed by the Department of Civil Protection (DPC), the Istituto Nazionale di Geofisica e Vulcanologia (INGV) and other regional research agencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.