Abstract. It has been previously proposed that alkalinity release from sediments can play an important role in the carbonate dynamics on continental shelves, lowering the pCO 2 of seawater and hence increasing the CO 2 uptake from the atmosphere. To test this hypothesis, sedimentary alkalinity generation was quantified within cohesive and permeable sediments across the North Sea during two cruises in September 2011 (basin-wide) and June 2012 (Dutch coastal zone). Benthic fluxes of oxygen (O 2 ), alkalinity (A T ) and dissolved inorganic carbon (DIC) were determined using shipboard closed sediment incubations. Our results show that sediments can form an important source of alkalinity for the overlying water, particularly in the shallow southern North Sea, where high A T and DIC fluxes were recorded in nearshore sediments of the Belgian, Dutch and German coastal zone. In contrast, fluxes of A T and DIC are substantially lower in the deeper, seasonally stratified, northern part of the North Sea. Based on the data collected, we performed a model analysis to constrain the main pathways of alkalinity generation in the sediment, and to quantify how sedimentary alkalinity drives atmospheric CO 2 uptake in the southern North Sea. Overall, our results show that sedimentary alkalinity generation should be regarded as a key component in the CO 2 dynamics of shallow coastal systems.
[1] The speciation of iron was investigated in three shelf seas and three deep basins of the Arctic Ocean in 2007. The dissolved fraction (<0.2 mm) and a fraction < 1000 kDa were considered here. In addition, unfiltered samples were analyzed. Between 74 and 83% of dissolved iron was present in the fraction < 1000 kDa at all stations and depth, except at the chlorophyll maximum (42-64%). Distinct trends in iron concentrations and ligand characteristics were observed from the shelf seas toward the central deep basins, with a decrease of total dissolvable iron (
Vertical and lateral transports are of importance in continental shelf systems such as the North Sea and play a major role in the processing of organic matter. We investigated the biogeochemical consequences of these transports on particulate organic matter at the molecular level in the southern North Sea. We analysed suspended particulate matter and surface sediments for organic carbon, pigments and phospholipid derived fatty acids at 10 stations sampled in September 2011 along the particle transport route. The particulate organic matter in both suspended particulate matter and surface sediment was mainly from marine phytoplankton origin but of fresher quality in the water column. Particulate organic matter quality did not change from south to north in the suspended particulate matter, whereas it 2 clearly decreased towards the north in the surface sediments, reflecting a decreased intensity of benthic-pelagic coupling. However, we also observed strong deposition of fresh organic matter in the northern station denoting that occasionally, intense benthic-pelagic coupling can occur. Finally, our study highlights the necessity to use a multiproxy approach covering multiple characteristic time scales, when investigating both suspended particulate matter and surface sediments.
Phospholipid-derived fatty acids (PLFA) and respiratory quinones (RQ) are microbial compounds that have been utilized as biomarkers to quantify bacterial biomass and to characterize microbial community structure in sediments, waters, and soils. While PLFAs have been widely used as quantitative bacterial biomarkers in marine sediments, applications of quinone analysis in marine sediments are very limited. In this study, we investigated the relation between both groups of bacterial biomarkers in a broad range of marine sediments from the intertidal zone to the deep sea. We found a good log-log correlation between concentrations of bacterial PLFA and RQ over several orders of magnitude. This relationship is probably due to metabolic variation in quinone concentrations in bacterial cells in different environments, whereas PLFA concentrations are relatively stable under different conditions. We also found a good agreement in the community structure classifications based on the bacterial PLFAs and RQs. These results strengthen the application of both compounds as quantitative bacterial biomarkers. Moreover, the bacterial PLFA- and RQ profiles revealed a comparable dissimilarity pattern of the sampled sediments, but with a higher level of dissimilarity for the RQs. This means that the quinone method has a higher resolution for resolving differences in bacterial community composition. Combining PLFA and quinone analysis as a complementary method is a good strategy to yield higher resolving power in bacterial community structure.
Abstract. Recently, it has been proposed that alkalinity release from sediments can play an important role in the carbonate dynamics on continental shelves, lowering the pCO2 of seawater and hence increasing the CO2 uptake from the atmosphere. To test this hypothesis, sedimentary alkalinity generation was quantified within permeable and muddy sediments across the North Sea during two cruises in September 2011 (basin-wide) and June 2012 (Dutch coastal zone). Benthic fluxes of alkalinity (AT) and dissolved inorganic carbon (DIC) were determined using shipboard closed sediment incubations. These results show that sediments can be an important source for alkalinity, particularly in the shallow southern North Sea, where high AT and DIC fluxes were recorded in near shore sediments of the Belgian, Dutch and German coastal zone. In contrast, fluxes of AT and DIC are substantially lower in the deeper, seasonally stratified, northern part of the North Sea. Overall, our results show that sedimentary alkalinity generation should be considered an important factor in the CO2 dynamics of shallow coastal systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.