Huntington's disease (HD) is a currently incurable neurodegenerative disease caused by the expansion of a CAG trinucleotide repeat within the huntingtin (HTT) gene. Therapeutic approaches include selectively inhibiting the expression of the mutated HTT allele while conserving function of the normal allele. We have evaluated a series of antisense oligonucleotides (ASOs) targeted to the expanded CAG repeat within HTT mRNA for their ability to selectively inhibit expression of mutant HTT protein. Several ASOs incorporating a variety of modifications, including bridged nucleic acids and phosphorothioate internucleotide linkages, exhibited allele-selective silencing in patient-derived fibroblasts. Allele-selective ASOs did not affect the expression of other CAG repeat-containing genes and selectivity was observed in cell lines containing minimal CAG repeat lengths representative of most HD patients. Allele-selective ASOs left HTT mRNA intact and did not support ribonuclease H activity in vitro. We observed cooperative binding of multiple ASO molecules to CAG repeat-containing HTT mRNA transcripts in vitro. These results are consistent with a mechanism involving inhibition at the level of translation. ASOs targeted to the CAG repeat of HTT provide a starting point for the development of oligonucleotide-based therapeutics that can inhibit gene expression with allelic discrimination in patients with HD.
U1snRNA, U3snRNA, 28 S ribosomal RNA, poly(A) RNA and a specific messenger RNA were visualized in living cells with microinjected fluorochrome-labeled 2' O-Methyl oligoribonucleotides (2' OMe RNA). Antisense 2' OMe RNA probes showed fast hybridization kinetics, whereas conventional oligodeoxyribonucleotide (DNA) probes did not. The nuclear distributions of the signals in living cells were similar to those found in fixed cells, indicating specific hybridization. Cytoplasmic ribosomal RNA, poly(A) RNA and mRNA could hardly be visualized, mainly due to a rapid entrapment of the injected probes in the nucleus. The performance of linear probes was compared with that of molecular beacons, which due to their structure should theoretically fluoresce only upon hybridization. No improvements were achieved however with the molecular beacons used in this study, suggesting opening of the beacons by mechanisms other than hybridization. The results show that linear 2' OMe RNA probes are well suited for RNA detection in living cells, and that these probes can be applied for dynamic studies of highly abundant nuclear RNA. Furthermore, it proved feasible to combine RNA detection with that of green fluorescent protein-labeled proteins in living cells. This was applied to show co-localization of RNA with proteins and should enable RNA-protein interaction studies.
Antisense oligonucleotides represent an interesting tool for selective inhibition of gene expression, but their efficient introduction within intact cells proved to be difficult to realize. As a step toward this goal, small (13- or 15-mer) synthetic oligodeoxyribonucleotides have been coupled at their 3' ends to epsilon-amino groups of lysine residues of poly(L-lysine) (Mr, 14,000). A 15-mer oligonucleotide-poly(L-lysine) conjugate complementary to the initiation region of vesicular stomatitis virus (VSV) N-protein mRNA specifically inhibits the synthesis of VSV proteins and exerts an antiviral activity against VSV when added in the cell culture medium at doses as low as 100 nM. Neither synthesis of cellular proteins nor multiplication of encephalomyocarditis virus was affected significantly by this oligonucleotide conjugate. The data suggest that oligonucleotide-poly(L-lysine) conjugates might become effective for studies on gene expression regulation and for antiviral chemotherapy.
Due to its remarkably long half-life, together with its wide in vivo distribution and its lack of enzymatic or immunological functions, human serum albumin (HSA) represents an optimal carrier for therapeutic peptides/proteins aimed at interacting with cellular or molecular components of the vascular and interstitial compartments. As an example, we designed a genetically engineered HSA-CD4 hybrid aimed at specifically blocking the entry of the human immunodeficiency virus into CD4+ cells. In contrast with CD4, HSA-CD4 is correctly processed and efficiently secreted by Kluyveromyces yeasts. In addition, its CD4 moiety exhibits binding and antiviral in vitro properties similar to those of soluble CD4. Finally, the elimination half-life of HSA-CD4 in a rabbit experimental model is comparable to that of control HSA and 140-fold higher than that of soluble CD4. These results indicate that the genetic fusion of bioactive peptides to HSA is a plausible approach toward the design and recovery of secreted therapeutic HSA derivatives with appropriate pharmacokinetic properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.